
Department of Mathematics & Statistics
Winter 2024, Math 204, HW Assignment

Due: February 28, 2024, in class.

The numbers between brackets in the margin represent the marks assigned to the question.
The maximum grade is 100.

1. Parametrize the following surfaces and determine the coordinates of the unit normal
vector to the surface at any point.

(a) 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3; 𝑥2 + 𝑧2 = 16}.(15)
(b) 2𝑥 + 3𝑦 − 𝑧 = 17.(15)
(c) (𝑥 − 2)2 + (𝑦 − 3)2 + (𝑧 − 1)2 = 16.(15)

(d)
𝑥2

4
+ (𝑦 − 3)2

4
+ 𝑧2 = 1.(15)

2. In this exercise, we prove the following

Theorem 1. Suppose Ω ⊂ R𝑁 is a path-connected domain and that F : Ω → R𝑁 is
a continuous vector field on Ω. If F is a path-independent vector field, then F is the
gradient of some scalar-valued function 𝑓 . That is, there exists 𝑓 : Ω → R such that
∇ 𝑓 (𝑥) = F(𝑥) for all 𝑥 ∈ Ω ⊂ R𝑁 .

Recall that “ F is path-independent” means

Definition 1. F is said to be path independent if for any piecewise continuous curve
(𝐶), originating at a point 𝐴 and ending at a point 𝐵, the line integral

∫
(𝐶)

F · 𝑑𝑟

depends only on the points 𝐴 and 𝐵. In other words, if 𝐶1 and 𝐶2 are two different
piecewise continuous curves, having the same initia terminal points, then∫

𝐶1

F · 𝑑𝑟 =
∫
𝐶2

F · 𝑑𝑟.

It is not difficult to see that Definition 1 can be replaced by the following definition for
path-independence:
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Definition 2. F is said to be path independent if for any closed piecewise continuous
curve 𝐶, we have ∫

𝐶

F · 𝑑𝑟 = 0.

We state the following fact (you can think about a simple proof, without writing it in
your paper)

Proposition 1. If u1 and u2 are two vectors in R𝑁 such that u1 · v = u2 · v for all
v ∈ R𝑁 , then

u1 = u2.

Lastly, we recall that the gradient of a scalar function 𝑔 enjoys the following

Proposition 2. Let v be a unit vector in R𝑁 and let 𝑔 : Ω → R be a 𝐶1-function. Then,
the directional derivative of 𝑔 in the direction of v satisfies

∀𝑥 ∈ R𝑁 , 𝐷v𝑔(𝑥) =
𝜕𝑔

𝜕v
(𝑥) = ∇𝑔(𝑥) · v.

In what follows, we proceed to prove Theorem 1 through some steps (that we list below
as questions to be answered in this assignment). Remember, we need to find a function
𝑓 so that ∇ 𝑓 = F based on the assumption that F is path-independent.
Suppose Ω ⊂ R𝑁 is a path-connected domain and that F : Ω → R𝑁 is a path-
independent continuous vector field on Ω. Fix some point a in Ω. Let 𝑓 : Ω → R be
the function defined by

∀®𝑥 ∈ Ω, 𝑓 (®𝑥) :=
∫
𝛾 [a,®𝑥]

F · 𝑑𝑟, (1)

where 𝛾 [a, ®𝑥] is any differentiable curve from a to ®𝑥 (recall that 𝐹 is path-independent.
So, the form/geometry of 𝛾 does not matter in (1). What matters is only the origin a
and the terminal ®𝑥.)

(a) Let v be a unit vector in R𝑁 . Explain why, for any ℎ ∈ R, we have(5) ∫
𝛾 [a,®𝑥+ℎv]

F · 𝑑𝑟 −
∫
𝛾 [a,®𝑥]

F · 𝑑𝑟 =
∫
𝛾 [®𝑥,®𝑥+ℎv]

F · 𝑑𝑟.
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(b) We know that the direction derivative
𝜕 𝑓

𝜕v
(®𝑥) is(5)

𝜕 𝑓

𝜕v
(®𝑥) := lim

ℎ→0

𝑓 (®𝑥 + ℎv) − 𝑓 (®𝑥)
ℎ

. (2)

Use (2) and part (a) to show that

𝜕 𝑓

𝜕v
(®𝑥) := lim

ℎ→0

1
ℎ

∫
𝛾 [®𝑥,®𝑥+ℎv]

F · 𝑑𝑟. (3)

(c) At this stage, we will look into the limit in (3). Here, it is worth remembering that(5)
𝛾 [®𝑥, ®𝑥 + ℎv] can be arbitrarily chosen (provided differentiability). To compute
the limit in (3), we choose 𝛾 [®𝑥, ®𝑥 + ℎv] to be the least complicated path from ®𝑥 to
®𝑥 + ℎv. That would be the line segment originating at ®𝑥 and terminating at ®𝑥 + ℎv.
Using 𝑡 as a parameter, show that 𝑟 (𝑡) = ®𝑥 + 𝑡v with 0 ≤ 𝑡 ≤ ℎ is a suitable
parametrization of the line segment 𝛾 [®𝑥, ®𝑥 + ℎv] .

(d) Using the parametrization in (c), conclude that the limit in (3) can be written as(5)

𝜕 𝑓

𝜕v
(®𝑥) = lim

ℎ→0

1
ℎ

∫ ℎ

0
F(®𝑥 + 𝑡v) · v 𝑑𝑡. (4)

(e) We note that the integrand in the RHS of (4) can be viewed scalar function of one(5)
variable (𝑡). Let’s call, for the fixed ®𝑥 and v, 𝜙(𝑡) := F(®𝑥 + 𝑡v) · v. So (4) reads

𝜕 𝑓

𝜕v
(®𝑥) = lim

ℎ→0

1
ℎ

∫ ℎ

0
𝜙(𝑡) 𝑑𝑡.

Let Φ be an antiderivative of 𝜙. Show, using Φ, that

lim
ℎ→0

1
ℎ

∫ ℎ

0
𝜙(𝑡) 𝑑𝑡 = 𝜙(0).

(f) Conclude from (e) and (d) that(5)

𝜕 𝑓

𝜕v
(®𝑥) = F(®𝑥) · v. (5)

(g) Use (f) and Proposition 2 to conclude that(5)

∇ 𝑓 (®𝑥) · v = F(®𝑥) · v. (6)
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(h) Recall now that v was arbitrary (we fixed an arbitrary unit vector v in part (a)(5)
above). Use Proposition 1 to conclude that ∇ 𝑓 (®𝑥) = F(𝑥) and thus complete the
proof of Theorem 1.

TOTAL MARKS: 100
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