Department of Mathematics \& Statistics

The numbers between brackets in the margin represent the marks assigned to the question. The maximum grade is 100 .

1. Parametrize the following surfaces and determine the coordinates of the unit normal vector to the surface at any point.
(a) $S=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+z^{2}=16\right\}$.
(b) $2 x+3 y-z=17$.
(c) $(x-2)^{2}+(y-3)^{2}+(z-1)^{2}=16$.
(d) $\frac{x^{2}}{4}+\frac{(y-3)^{2}}{4}+z^{2}=1$.
2. In this exercise, we prove the following

Theorem 1. Suppose $\Omega \subset \mathbb{R}^{N}$ is a path-connected domain and that $\mathbf{F}: \Omega \rightarrow \mathbb{R}^{N}$ is a continuous vector field on Ω. If F is a path-independent vector field, then F is the gradient of some scalar-valued function f. That is, there exists $f: \Omega \rightarrow \mathbb{R}$ such that $\nabla f(x)=\mathbf{F}(x)$ for all $x \in \Omega \subset \mathbb{R}^{N}$.

Recall that " \mathbf{F} is path-independent" means
Definition 1. F is said to be path independent iffor any piecewise continuous curve (C), originating at a point A and ending at a point B, the line integral $\int_{(C)} \mathbf{F} \cdot d r$ depends only on the points A and B. In other words, if C_{1} and C_{2} are two different piecewise continuous curves, having the same initia terminal points, then

$$
\int_{C_{1}} \mathbf{F} \cdot d r=\int_{C_{2}} \mathbf{F} \cdot d r
$$

It is not difficult to see that Definition 1 can be replaced by the following definition for path-independence:

Definition 2. F is said to be path independent iffor any closed piecewise continuous curve C, we have

$$
\int_{C} \mathbf{F} \cdot d r=0
$$

We state the following fact (you can think about a simple proof, without writing it in your paper)

Proposition 1. If \mathbf{u}_{1} and \mathbf{u}_{2} are two vectors in \mathbb{R}^{N} such that $\mathbf{u}_{1} \cdot \mathbf{v}=\mathbf{u}_{2} \cdot \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{N}$, then

$$
\mathbf{u}_{1}=\mathbf{u}_{2} .
$$

Lastly, we recall that the gradient of a scalar function g enjoys the following
Proposition 2. Let \mathbf{v} be a unit vector in \mathbb{R}^{N} and let $g: \Omega \rightarrow \mathbb{R}$ be a C^{1}-function. Then, the directional derivative of g in the direction of \mathbf{v} satisfies

$$
\forall x \in \mathbb{R}^{N}, D_{\mathbf{v}} g(x)=\frac{\partial g}{\partial \mathbf{v}}(x)=\nabla g(x) \cdot \mathbf{v}
$$

In what follows, we proceed to prove Theorem 1 through some steps (that we list below as questions to be answered in this assignment). Remember, we need to find a function f so that $\nabla f=\mathbf{F}$ based on the assumption that \mathbf{F} is path-independent.
Suppose $\Omega \subset \mathbb{R}^{N}$ is a path-connected domain and that $\mathbf{F}: \Omega \rightarrow \mathbb{R}^{N}$ is a pathindependent continuous vector field on Ω. Fix some point a in Ω. Let $f: \Omega \rightarrow \mathbb{R}$ be the function defined by

$$
\begin{equation*}
\forall \vec{x} \in \Omega, \quad f(\vec{x}):=\int_{\gamma[\mathbf{a}, \vec{x}]} \mathbf{F} \cdot d r, \tag{1}
\end{equation*}
$$

where $\gamma[\mathbf{a}, \vec{x}]$ is any differentiable curve from a to \vec{x} (recall that F is path-independent. So, the form/geometry of γ does not matter in (1). What matters is only the origin a and the terminal \vec{x}.)
(a) Let \mathbf{v} be a unit vector in \mathbb{R}^{N}. Explain why, for any $h \in \mathbb{R}$, we have

$$
\int_{\gamma[\mathbf{a}, \vec{x}+h \mathbf{v}]} \mathbf{F} \cdot d r-\int_{\gamma[\mathbf{a}, \vec{x}]} \mathbf{F} \cdot d r=\int_{\gamma[\vec{x}, \vec{x}+h \mathbf{v}]} \mathbf{F} \cdot d r .
$$

(b) We know that the direction derivative $\frac{\partial f}{\partial \mathbf{v}}(\vec{x})$ is

$$
\begin{equation*}
\frac{\partial f}{\partial \mathbf{v}}(\vec{x}):=\lim _{h \rightarrow 0} \frac{f(\vec{x}+h \mathbf{v})-f(\vec{x})}{h} \tag{5}
\end{equation*}
$$

Use (2) and part (a) to show that

$$
\begin{equation*}
\frac{\partial f}{\partial \mathbf{v}}(\vec{x}):=\lim _{h \rightarrow 0} \frac{1}{h} \int_{\gamma[\vec{x}, \vec{x}+h \mathbf{v}]} \mathbf{F} \cdot d r \tag{3}
\end{equation*}
$$

(5) (c) At this stage, we will look into the limit in (3). Here, it is worth remembering that $\gamma[\vec{x}, \vec{x}+h \mathbf{v}]$ can be arbitrarily chosen (provided differentiability). To compute the limit in (3), we choose $\gamma[\vec{x}, \vec{x}+h \mathbf{v}]$ to be the least complicated path from \vec{x} to $\vec{x}+h \mathbf{v}$. That would be the line segment originating at \vec{x} and terminating at $\vec{x}+h \mathbf{v}$. Using t as a parameter, show that $r(t)=\vec{x}+t \mathrm{v}$ with $0 \leq t \leq h$ is a suitable parametrization of the line segment $\gamma[\vec{x}, \vec{x}+h \mathbf{v}]$.
(5) (d) Using the parametrization in (c), conclude that the limit in (3) can be written as

$$
\begin{equation*}
\frac{\partial f}{\partial \mathbf{v}}(\vec{x})=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \mathbf{F}(\vec{x}+t \mathbf{v}) \cdot \mathbf{v} d t \tag{4}
\end{equation*}
$$

(5) (e) We note that the integrand in the RHS of (4) can be viewed scalar function of one variable (t). Let's call, for the fixed \vec{x} and $\mathbf{v}, \phi(t):=\mathbf{F}(\vec{x}+t \mathbf{v}) \cdot \mathbf{v}$. So (4) reads

$$
\frac{\partial f}{\partial \mathbf{v}}(\vec{x})=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \phi(t) d t
$$

Let Φ be an antiderivative of ϕ. Show, using Φ, that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \phi(t) d t=\phi(0)
$$

(5) (f) Conclude from (e) and (d) that

$$
\begin{equation*}
\frac{\partial f}{\partial \mathbf{v}}(\vec{x})=\mathbf{F}(\vec{x}) \cdot \mathbf{v} \tag{5}
\end{equation*}
$$

(5) (g) Use (f) and Proposition 2 to conclude that

$$
\begin{equation*}
\nabla f(\vec{x}) \cdot \mathbf{v}=\mathbf{F}(\vec{x}) \cdot \mathbf{v} \tag{6}
\end{equation*}
$$

(5)
(h) Recall now that \mathbf{v} was arbitrary (we fixed an arbitrary unit vector \mathbf{v} in part (a) above). Use Proposition 1 to conclude that $\nabla f(\vec{x})=\mathbf{F}(x)$ and thus complete the proof of Theorem 1.

TOTAL MARKS: 100

