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1 Statement and proof of the theorem

Let H be a Hilbert space over R or C, and T a bounded linear functional on H (a
bounded operator from H to the field, R or C (over which H is defined).

The Riesz Representation Theorem reads:

Theorem 1. IfT is a bounded linear functional on a Hilbert space H then there
exists some g € H such that for every f € H we have

T(f)=(f.8)-

Moreover, ||T|| = ||gl|| (here ||T|| denotes the operator norm of T, while ||g|| is the
Hilbert space norm of g.)

Proof. Let’s assume that H is separable for now. It’s not much harder to prove
Theorem 1 for any Hilbert space, but the separable case makes nice use of the
ideas we developed regarding Fourier analysis. Also, let’s just work over R. Since
H is separable, we can choose an orthonormal basis ¢;, j > 1, for H. Let T be a
bounded linear functional and set

aj =T (¢;).
Choose f € H, let c; = (f,¢;), and define f, = chgoj. Since the ¢; form a

j=1
basis we know that
lfn — fllg = 0 as n — +oo.
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Since T is linear we have
n

T(fa) =) ajc;. (1)
j=1
As T is bounded, we have
IT(fo) =TfI < T fu = fllg — 0, asn — co. 2)

Thus {T f, }» converges in R to T f. That is,

o0

T(f) = im T(f,) = )" ajc;. (3)

j=1

In fact, the sequence {a;} must itself be square-summable. To see this, first note
that since |T(f)| < ||IT||||f|| we have

12
(o] (o)

Daje; <ITI| Y. 3| . 4)

J=1 J=1

The above holds for any square-summable sequence {c;} (since any such {c;}
corresponds to an element of H). So now we pick N € N and take a sequence {c;}
such that

ci=ajforl1 <j<N, c;j=0forj>N.

Clearly this {c;} is square-summable and plugging it into (4) yields

1/2

N N
Z < TN D 5| 5)
: J=1
Hence,
1/2
N
24| =1 (©)

J=1

Thus {a,} is square-summable, since the sequence of partial sums is bounded
above.
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Since {a;} is square-summable, it follows that g := Z ajp; is well-defined as an

j=1
element of H. From (3), we have

VEeH, T(f)=) ajc;=) aif.e)={f,) aje;)=(f.g).
j=1 j=1 j=1

Inequality (6) (after passing to the limit N — oo) implies that ||T|| > ||g]||. On
the other hand, Cauchy-Schwatz inequality implies that |(f, g)| < || f]l|lg|l. This

T
means |||(f];|)| < |lgll and hence ||T|| < ||g||. Therefore, ||T|| = ||g|l and this
completes the proof of Riesz theorem. O

2 An application of Riesz representation theorem in
differential equations

This examples illustrates how functional analytic methods are used in PDE (though
the example is for an ODE). Consider the ODE

—u"(x) + b(x)u(x) = f(x) (7

on the interval 0 < x < 1, where b(x) > ¢ > 0 for some §; assume the functions
b and f are continuous on [0, 1]. We want a solution to equation (7) with u’(0) =
u’(1) = 0 (other boundary conditions are possible).

Variational/weak formulation of (7). If we multiply (7) by a C! function
¢ and integrate the first term, —u” ¢ by parts from x = 0 to x = 1, we obtain

1 1
/0 (u'(x)¢" (x) + b(x)u(x)$(x)) dx:/o J(x)¢(x) dx. ®)

Equation (8) must hold for any ¢ € C'([0,1]), if u is a C*(0, 1) solution to
equation (7) that is continuous on [0, 1]. Conversely, if for a given C? function u
we find that (8) holds for all ¢, then u must be a solution to equation (7), for if we
“undo” the integration by parts in (8) we obtain

u(1)¢'(1) = u(0)¢’(0) + ¢(x) (—u" (x) + b(x)u(x)) = ¢(x) f (x) €
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for all ¢. A popular PDE argument (when (9) holds for all test functions ¢) then
shows that u’(0) = u’(1) = 0 and equation (7) must hold.

We are going to show that there is a unique solution to equation (8). Such a
“solution” will not necessarily be twice-differentiable as required by equation (7),
but it will satisfy equation (8). Equation (8) is often called the “weak” formulation
of the problem (7).

Finding a weak solution (i.e. a solution to (8)). Define the inner
product

1
(v, w) ::/0 V()W (x) +b(x)v(x)w(x)) dx

on the space C'[0, 1].

Exercise. Show that this is indeed an inner product—observe the use of the
assumption b(x) > 6§ > 0 when showing that (g,g) = 0iff g = O on [0, 1]. Note
that the presence of b in the inner product makes no much difference from the
inner product with no b(x).

Let H denote the completion of this space. In other words, H is such that C'[0, 1] c
H and H is complete when equipped with the norm induced by the above inner
product. The space H is a Hilbert space, and can be interpreted (if need be) as a
subspace of C([0, 1]).

Define a functional 7 : H — R by
1
1@)= [ 000 d

You can easily check that 7" is bounded on H (use Cauchy-Schwarz). From the
Riesz Representation Theorem it then follows that there must exist some function
u € H such that

T(¢) = (u, ¢).
The latter is exactly (8) and so u is a weak solution of the given ODE (7).
The function u that satisfies equation (8) lies in H. To show that u is actually twice

differentiable requires more work (known as regularity of solutions), along with
the assumptions on » and the RHS f of (7).
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