The Riesz Representation Theorem MATH 402/602, UNBC

Mohammad El Smaily

1 Statement and proof of the theorem

Let H be a Hilbert space over \mathbb{R} or \mathbb{C}, and T a bounded linear functional on H (a bounded operator from H to the field, \mathbb{R} or \mathbb{C} (over which H is defined).

The Riesz Representation Theorem reads:
Theorem 1. If T is a bounded linear functional on a Hilbert space H then there exists some $g \in H$ such that for every $f \in H$ we have

$$
T(f)=\langle f, g\rangle
$$

Moreover, $\|T\|=\|g\|$ (here $\|T\|$ denotes the operator norm of T, while $\|g\|$ is the Hilbert space norm of g.)

Proof. Let's assume that H is separable for now. It's not much harder to prove Theorem 1 for any Hilbert space, but the separable case makes nice use of the ideas we developed regarding Fourier analysis. Also, let's just work over \mathbb{R}. Since H is separable, we can choose an orthonormal basis $\varphi_{j}, j \geq 1$, for H. Let T be a bounded linear functional and set

$$
a_{j}:=T\left(\varphi_{j}\right)
$$

Choose $f \in H$, let $c_{j}=\left\langle f, \varphi_{j}\right\rangle$, and define $f_{n}=\sum_{j=1}^{n} c_{j} \varphi_{j}$. Since the φ_{j} form a basis we know that

$$
\left\|f_{n}-f\right\|_{H} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Since T is linear we have

$$
\begin{equation*}
T\left(f_{n}\right)=\sum_{j=1}^{n} a_{j} c_{j} \tag{1}
\end{equation*}
$$

As T is bounded, we have

$$
\begin{equation*}
\left|T\left(f_{n}\right)-T f\right| \leq\|T\|\left\|f_{n}-f\right\|_{H} \rightarrow 0, \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Thus $\left\{T f_{n}\right\}_{n}$ converges in R to $T f$. That is,

$$
\begin{equation*}
T(f)=\lim _{n \rightarrow \infty} T\left(f_{n}\right)=\sum_{j=1}^{\infty} a_{j} c_{j} \tag{3}
\end{equation*}
$$

In fact, the sequence $\left\{a_{j}\right\}$ must itself be square-summable. To see this, first note that since $|T(f)| \leq\|T\|\|f\|$ we have

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j} c_{j} \leq\|T\|\left(\sum_{j=1}^{\infty} c_{j}^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

The above holds for any square-summable sequence $\left\{c_{j}\right\}$ (since any such $\left\{c_{j}\right\}$ corresponds to an element of H). So now we pick $N \in \mathbb{N}$ and take a sequence $\left\{c_{j}\right\}$ such that

$$
c_{j}=a_{j} \text { for } 1 \leq j \leq N, \quad c_{j}=0 \text { for } j>N .
$$

Clearly this $\left\{c_{j}\right\}$ is square-summable and plugging it into (4) yields

$$
\begin{equation*}
\sum_{j=1}^{N} a_{j}^{2} \leq\|T\|\left(\sum_{j=1}^{N} a_{j}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left(\sum_{j=1}^{N} a_{j}^{2}\right)^{1 / 2} \leq\|T\| \tag{6}
\end{equation*}
$$

Thus $\left\{a_{j}\right\}$ is square-summable, since the sequence of partial sums is bounded above.

Since $\left\{a_{j}\right\}$ is square-summable, it follows that $g:=\sum_{j=1}^{\infty} a_{j} \varphi_{j}$ is well-defined as an element of H. From (3), we have

$$
\forall f \in H, \quad T(f)=\sum_{j=1}^{\infty} a_{j} c_{j}=\sum_{j=1}^{\infty} a_{j}\left\langle f, \varphi_{j}\right\rangle=\left\langle f, \sum_{j=1}^{\infty} a_{j} \varphi_{j}\right\rangle=\langle f, g\rangle .
$$

Inequality (6) (after passing to the limit $N \rightarrow \infty$) implies that $\|T\| \geq\|g\|$. On the other hand, Cauchy-Schwatz inequality implies that $|\langle f, g\rangle| \leq\|f\|\|g\|$. This means $\frac{|T(f)|}{\|f\|} \leq\|g\|$ and hence $\|T\| \leq\|g\|$. Therefore, $\|T\|=\|g\|$ and this completes the proof of Riesz theorem.

2 An application of Riesz representation theorem in differential equations

This examples illustrates how functional analytic methods are used in PDE (though the example is for an ODE). Consider the ODE

$$
\begin{equation*}
-u^{\prime \prime}(x)+b(x) u(x)=f(x) \tag{7}
\end{equation*}
$$

on the interval $0<x<1$, where $b(x) \geq \delta>0$ for some δ; assume the functions b and f are continuous on $[0,1]$. We want a solution to equation (7) with $u^{\prime}(0)=$ $u^{\prime}(1)=0$ (other boundary conditions are possible).

Variational/weak formulation of (7). If we multiply (7) by a C^{1} function ϕ and integrate the first term, $-u^{\prime \prime} \phi$ by parts from $x=0$ to $x=1$, we obtain

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime}(x) \phi^{\prime}(x)+b(x) u(x) \phi(x)\right) d x=\int_{0}^{1} f(x) \phi(x) d x \tag{8}
\end{equation*}
$$

Equation (8) must hold for any $\phi \in C^{1}([0,1])$, if u is a $C^{2}(0,1)$ solution to equation (7) that is continuous on [0, 1]. Conversely, if for a given C^{2} function u we find that (8) holds for all ϕ, then u must be a solution to equation (7), for if we "undo" the integration by parts in (8) we obtain

$$
\begin{equation*}
u(1) \phi^{\prime}(1)-u(0) \phi^{\prime}(0)+\phi(x)\left(-u^{\prime \prime}(x)+b(x) u(x)\right)=\phi(x) f(x) \tag{9}
\end{equation*}
$$

for all ϕ. A popular PDE argument (when (9) holds for all test functions ϕ) then shows that $u^{\prime}(0)=u^{\prime}(1)=0$ and equation (7) must hold.

We are going to show that there is a unique solution to equation (8). Such a "solution" will not necessarily be twice-differentiable as required by equation (7), but it will satisfy equation (8). Equation (8) is often called the "weak" formulation of the problem (7).

Finding a weak solution (i.e. a solution to (8)). Define the inner product

$$
\langle v, w\rangle:=\int_{0}^{1}\left(v^{\prime}(x) w^{\prime}(x)+b(x) v(x) w(x)\right) d x
$$

on the space $C^{1}[0,1]$.

Exercise. Show that this is indeed an inner product-observe the use of the assumption $b(x) \geq \delta>0$ when showing that $\langle g, g\rangle=0$ iff $g \equiv 0$ on [0,1$]$. Note that the presence of b in the inner product makes no much difference from the inner product with no $b(x)$.

Let H denote the completion of this space. In other words, H is such that $C^{1}[0,1] \subset$ H and H is complete when equipped with the norm induced by the above inner product. The space H is a Hilbert space, and can be interpreted (if need be) as a subspace of $C([0,1])$.

Define a functional $T: H \rightarrow \mathbb{R}$ by

$$
T(\phi)=\int_{0}^{1} f(x) \phi(x) d x
$$

You can easily check that T is bounded on H (use Cauchy-Schwarz). From the Riesz Representation Theorem it then follows that there must exist some function $u \in H$ such that

$$
T(\phi)=\langle u, \phi\rangle .
$$

The latter is exactly (8) and so u is a weak solution of the given ODE (7).
The function u that satisfies equation (8) lies in H. To show that u is actually twice differentiable requires more work (known as regularity of solutions), along with the assumptions on b and the RHS f of (7).

