Exercise 1.

Consider

$$(P)_{\lambda} \qquad \begin{cases} -\Delta u &= \lambda f(u) \quad \Omega\\ u &= 0 \quad \partial \Omega, \end{cases}$$
(1)

Problems on PDE

where f is smooth, increasing, convex and superlinear at ∞ (i.e. $\lim_{t\to\infty} \frac{f(t)}{t} = \infty$) and where f(0) = 1, Ω is a bounded domain in \mathbb{R}^N , and $\lambda > 0$ is a parameter. Prove that there exists some $\lambda^* \in (0, \infty)$ (the extremal parameter) such that for all $0 < \lambda < \lambda^*$ there exists a smooth solution u of $(P)_{\lambda}$. Moreover, for all $\lambda > \lambda^*$ there are no weak solutions of $(P)_{\lambda}$ (here one needs to define weak).

Define

 $\lambda^* := \sup \left\{ 0 \le \lambda : (P)_{\lambda} \text{ has a smooth solution} \right\}.$

We first show $\lambda^* < \infty$. Let $\phi > 0$ denote the first eigenvalue of $-\Delta$ in H_0^1 . So $-\Delta \phi = \lambda_1 \phi$ in Ω . Let u be smooth solution of $(P)_{\lambda}$. Multiply $(P)_{\lambda}$ by ϕ and integrate by parts to see that

$$\int_{\Omega} \left(\lambda f(u) - \lambda_1 u\right) \phi(x) dx = 0$$

and since $\phi > 0$ we must have

$$\inf_{\Omega} \left(\lambda f(u) - \lambda_1 u \right) = 0.$$

So there is some $t \ge 0$ (recall $\lambda f(u) \ge 0$ so $u \ge 0$) such that $\lambda f(t) - \lambda_1 t = 0$. Hence we have

$$\lambda \le \lambda_1 \sup_{t \ge 0} \frac{t}{f(t)}.$$

So $\lambda^* \leq \lambda_1 \sup_{t \geq 0} \frac{t}{f(t)}$ which is finite after considering fact f superlinear at ∞ .

We now show that $\lambda^* > 0$. This follows directly from the implicit function theorem applied to the solution $\lambda = 0$, u = 0. Instead of using the IFT we can use a sub/super solution approach. Clearly $\underline{u} = 0$ is a subsolution. We just need to find a supersolution $\overline{u} \ge 0$. Let $-\Delta \overline{u} = 1$ in Ω with $\overline{u} = 0$ on $\partial \Omega$. Then $\overline{u} > 0$ in Ω and let $M := \max_{\Omega} \overline{u}$. Then \overline{u} a supersolution provided $1 \ge \lambda f(\overline{u})$ in Ω and it is sufficient that $1 \ge \lambda f(M)$. But taking $\lambda > 0$ small enough ensures this.

We now show that for all $0 < \lambda < \lambda^*$ there exists a smooth solution. Fix $0 < \lambda < \lambda^*$ and let $\lambda \leq \gamma \leq \lambda^*$ is such that there is a smooth solution v of $(P)_{\gamma}$ (this exists by the definition of λ^* and supremum). Then to solve $(P)_{\lambda}$ we apply the sub/supersolution proposition with $\underline{u} = 0$ and $\overline{u} = v$ to find a smooth solution $0 \leq u \leq v$ in Ω of $(P)_{\lambda}$. Lets check that $\overline{u} := v$ is indeed a supersolution. Its nonnegative on $\partial\Omega$ and

$$-\Delta v = \gamma f(v) \ge \lambda f(v) \qquad \Omega$$

and so it is a supersolution.

To complete the proof of 1) we need to show there are no weak solutions of $(P)_{\lambda}$ for any $\lambda > 0$. **Idea.** Suppose there is some sort of weak solution w of $(P)_{\lambda}$ for some $\lambda^* < \lambda$. Fix $\lambda^* < \lambda_1 < \lambda$. The idea is to use w to construct a bounded supersolution v of $(P)_{\lambda_1}$ and then we could apply the sub/supersolution method to see that $\lambda^* \geq \lambda_1$ (recall λ^* is the supremum of λ with smooth solutions) to get a contradiction. The form of v we look for is v = g(w) where g is some bounded function. For v to be supersolution of $(P)_{\lambda_1}$ it is sufficient that $v \geq 0$ on $\partial\Omega$ and

$$g'(w)\lambda f(w) - g''(w)|\nabla w|^2 \ge \lambda_1 f(g(w))$$
 Ω

(here we just wrote out $-\Delta g(w) \ge \lambda_1 f(g(w))$.) So we want g bounded, $g \ge 0$ on $[0, \infty)$ and assume that $g''(w) \le 0$ on $w \in [0, \infty)$. Then it is sufficient that

$$\lambda g'(w)f(w) \ge \lambda_1 f(g(w)) \qquad \Omega$$

We now switch to a particular case since its more transparent. Assume $f(t) = e^t$. So we want

$$\lambda g'(w)e^w \ge \lambda_1 e^{g(w)}.$$

Solve for g assuming we have equality and one sees we want g of the form

$$g(w) := \ln\left(\frac{1}{C + \frac{\lambda_1}{\lambda}e^{-w}}\right)$$

and then lets assume we want g(0) = 0. So one ends up with

$$g(w) = \ln\left(\frac{\lambda}{\lambda - \lambda_1 + \lambda_1 e^{-w}}\right)$$

and then we check that g satisfies all the requirements, ie. $g \ge 0$ on $(0, \infty)$, $g'' \le 0$ on $(0, \infty)$, g bounded.