(13) 1. Let $a: \Omega \to \mathbb{R}$ be a smooth function defined over a bounded smooth domain $\Omega \subset \mathbb{R}^n$. Show that the boundary value problem

$$\begin{cases} \nabla \cdot (a(x)\nabla u) + b(x)u = \lambda u, & x \in \Omega \\ u = 0, & x \in \partial \Omega. \end{cases}$$
(1)

has only trivial solution with $\lambda > 0$, when $b(x) \leq 0$ and a(x) > 0 in Ω .

2. Let Ω be a smooth bounded domain in \mathbb{R}^n and consider

$$\begin{cases} u_t = \Delta u, \quad x \in \Omega, \quad t > 0\\ u(0, x) = f(x). \end{cases}$$
(2)

with the boundary conditions

$$\frac{\partial u}{\partial \nu}(x) = 0 \text{ for } x \in \partial \Omega.$$

(10) (a) Show, with all necessary justifications, that the quantity

$$N(t) := \int_{\Omega} (u(t, x, y))^2 \, \mathrm{d}x \mathrm{d}y$$

is decreasing in t provided that f is not a constant function.

(5) (b) Show that
$$\frac{dN}{dt} \equiv 0$$
 when f is a constant function.

(10) (c) Deduce that, if problem (2) has a solution, then such solution is unique.

(20) 3. Assume $f : \mathbb{R} \to \mathbb{R}$ is a C^1 bounded function with

$$f(0) = 0, \quad f'(0) > \lambda_1,$$

where λ_1 denotes the principal eigenvalue of $-\Delta$ with Dirichlet boundary conditions. Use the method of sub- and supersolutions to show that there exists asolution u of

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ u > 0 & \text{in } \Omega. \end{cases}$$
(3)

Help. Find a subsolution to (3) of the form
$$\varepsilon \varphi$$
, where ε is a constant to be chosen appropriately

For a supersolution, find a suitable constant M so that the solution to $\begin{cases} -\Delta \bar{u} = M & \text{in } \Omega \\ \bar{u} = 1 & \text{on } \partial \Omega \end{cases}$ can be a supersolution to (3).

4. Let
$$u(t,x) = v\left(\frac{x^2}{t}\right)$$
 for $x \in \mathbb{R}$ and $t > 0$.

(15) (a) Show that

if and only if

$$(*) 4zv''(z) + (2+z)v'(z) = 0, z > 0.$$

 $u_t = u_{xx}$

(10) (b) Show that the general solution of (*) is

$$v(z) = c \int_0^z e^{-s/4} s^{-1/2} \mathrm{d}s + k,$$

where c and k are constants.

5. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. Let $v \in C^2(\overline{\Omega})$ satisfy

$$\begin{cases} -\Delta u = f(x) & \text{in } \Omega\\ u = g(x) & \text{on } \partial\Omega. \end{cases}$$
(4)

The goal of this problem is to prove that there exists a constant C, only depending on Ω , such that

$$\max_{\overline{\Omega}} |v| \le C(\max_{\partial\Omega} |g| + \max_{\overline{\Omega}} |f|).$$
(5)

The following questions are steps that lead to the mentioned statement.

(5) (a) Denote by $L := \max_{\overline{\Omega}} |f|$. Let $\hat{v}(x) := v(x) + \frac{L}{2n} ||x||^2$. Show that

$$-\Delta \hat{v} \le 0 \text{ in } \Omega. \tag{6}$$

(5) (b) Why does it then follow that
$$\max_{\overline{\Omega}} |\hat{v}| \le \max_{\partial\Omega} |\hat{v}|$$
?

(2) (c) Compare
$$\max_{\overline{\Omega}} |v|$$
 to $\max_{\overline{\Omega}} |\hat{v}|$

(5) (d) Deduce from the above observations that (5) holds.

TOTAL MARKS: 100