Submission of your homework assignment will be via Blackboard.

Exercise 1.

Suppose that Ω is a bounded domain in \mathbb{R}^n with a smooth boundary. Let L be the elliptic operator given by

$$Lu := -\sum_{1 \le i,j \le n} a_{ij}(x)\partial_{x_i x_j} u + \sum_{1 \le i \le n} b_i \partial_{x_i} u + c(x)u,$$

where $(a_{ij})_{i,j}$ is a positive definite symmetric matrix, with smooth entries.

We say that an elliptic operator L satisfies the weak maximum principle if the following statement holds:

whenever $Lw \ge 0$ in Ω and $w \ge 0$ on $\partial \Omega$, we must have $w \ge 0$ everywhere in Ω .

Recall that, when $c \ge 0$, the weak maximum principle holds for the operator L. In this

problem, we will derive a necessary and sufficient condition so that the weak max. principle holds for such class of operators (without an assumption on the sign of c).

Prove the following

Theorem. Suppose that λ is the principal eigenvalue of L with Dirichlet boundary conditions. That is, there exists $\varphi > 0$ such that

$$\begin{cases} L\varphi = \lambda\varphi \text{ in }\Omega\\ \varphi = 0 \text{ on }\partial\Omega. \end{cases}$$

Then L satisfies the weak maximum principle if and only if $\lambda < 0$.

Exercise 2.

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Let $q : \Omega \to \mathbb{R}^n$ be a smooth vector field that satisfies the incompressibility condition

$$\nabla \cdot q \equiv 0$$
 in Ω .

Consider the dynamical system

$$\begin{cases} \frac{\mathrm{d}\Phi}{\mathrm{d}t}(t,\mathbf{x}) = q(\Phi(t,\mathbf{x})), & t > 0, \ \mathbf{x} \in \Omega, \\ \Phi(0,\mathbf{x}) = \mathbf{x}, & \mathbf{x} \in \Omega. \end{cases}$$
(1)

Let $J(t, \mathbf{x})$ be the determinant of the Jacobian matrix $\frac{\partial \Phi}{\partial \mathbf{x}}(t, \mathbf{x})$ (the general entry of this matrix is $\partial \Phi_i / \partial \mathbf{x}_j$).

1. Prove by direct calculations that

$$\frac{\partial J}{\partial t} = (\nabla_{\mathbf{x}} \cdot q) J(t, x), \quad J(0, \mathbf{x}) = 1.$$

Help. For simplicity, assume in this part that n = 2.

- 2. Conclude that $J \equiv 1$ in $[0, \infty) \times \Omega$
- 3. For each t > 0, let

$$\Omega_t := \Phi(t, \Omega)$$

be the transformation of the domain Ω under the flow q. Show that

measure(Ω_t) = measure(Ω).