

Submission of your homework assignment will be via Blackboard.

Exercise 1.

Let Ω be an open subset of \mathbb{R}^2 . Let u(x, y) be a nonconstant solution of the equation $u_{xy} = 0$. Is it possible for u to attain an interior maximum in Ω ?

Exercise 2 (Boundedness of domain is crucial in the maximum principle).

In this problem, we show that if one removes the assumption of Ω bounded then one can lose uniqueness of solutions. Consider

$$\begin{cases} u_{xx} + u_{yy} = 0 \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(1)

where

$$\Omega := \{ (x, y) \in \mathbb{R}^2 \text{ such that } x \in \mathbb{R} \text{ and } 0 < y < \pi \}.$$

Of course, u = 0 is a solution of (1). Find another solution of the form $u(x, y) = e^{\alpha x} \sin(\beta y)$ where α and β are to be determined.

Exercise 3.

Consider the *nonlinear* problem

$$\begin{cases} -\Delta u(x) + h(u(x)) = 0, \text{ for } x \in \Omega\\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(2)

where Ω a bounded domain in \mathbb{R}^n with smooth boundary and where $h : \mathbb{R} \to \mathbb{R}$ is smooth with $h'(z) \ge 0$ for all $z \in \mathbb{R}$. Show (2) has at most one solution.

Exercise 4.

Let $u:\mathbb{R}^n\to\mathbb{R}$ be a harmonic function such that

$$|u(x)| \le C_1 + C_2 |x|^{\sigma},$$

for some $1 < \sigma < 2$ and some constants $C_{1,2}$. Show that

$$u(x) = \mathbf{a} \cdot x + \mathbf{b}$$

for some constant vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n .

Hint: show that $u_{x_ix_i}(x) = 0$ *for all* $x \in \mathbb{R}^n$.