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THE NON-MONOTONICITY OF THE KPP SPEED

WITH RESPECT TO DIFFUSION

IN THE PRESENCE OF A SHEAR FLOW

MOHAMMAD EL SMAILY

(Communicated by James E. Colliander)

Abstract. In this paper, we prove via counterexamples that adding an
advection term of the form Shear flow (whose streamlines are parallel to
the direction of propagation) to a reaction-diffusion equation will be enough
heterogeneity to spoil the increasing behavior of the KPP speed of propagation
with respect to diffusion. The non-monotonicity of the speed with respect to
diffusion will occur even when the reaction term and the diffusion matrices are
considered homogeneous (do not depend on space variables). For the sake of
completeness, we announce our results in a setting which allows domains with

periodic perforations that may or may not be equal to the whole space R
N .

1. Introduction and motivation

Pulsating traveling fronts are particular solutions of heterogeneous reaction-
advection-diffusion equations that describe propagation phenomena for combustion
models, the evolution of epidemics, population dynamics and many other phenom-
ena. This paper is dedicated to answering the question of whether the minimal
speed of propagation (KPP non-linearity) is monotone with respect to the diffusion
coefficient. We answer this question in the case where an advection term is present.
This work is also a continuation of the paper [4], which dealt with the dependence
and asymptotic behaviors of the minimal speed of propagation on the coefficients
of the reaction-diffusion equation in heterogenous media.

To explain the question mathematically we start by recalling the definition of
the minimal speed of propagation and the changes that happen while passing from
a homogeneous to a heterogeneous setting.

1.0.1. Homogeneous framework. In the article [10] by Kolmogorov, Petrovsky and
Piskunov, the setting was “homogeneous” in the following sense. The equation
considered in [10] was

(1.1) ut = Δu+ f(u) for all (t, x) ∈ R× R
N ,
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3554 MOHAMMAD EL SMAILY

where 0 ≤ u = u(t, x) ≤ 1 was a function defined over R× R
N . The reaction term

f was assumed to be of KPP type. That is, f : [0, 1] �→ R such that

(1.2) f(u) > 0 for all u ∈ (0, 1), f ′(0) > 0,

together with the sub-linearity condition (which is usually called the “KPP condi-
tion”) over the interval [0, 1]:

(1.3) ∀u ∈ [0, 1], f(u) ≤ f ′(0)u.

One can see that, in equation (1.1), the diffusion and reaction terms do not depend
on space and time variables and there is no advection term of the form q(x) · ∇u.
Fixing a unitary direction e ∈ R

N , traveling fronts in the direction of −e and with
a speed c, in such a homogeneous setting, are solutions u(t, x) = φ(x ·e+ ct) = φ(s)
which satisfy the limiting conditions φ(−∞) = 0 and φ(+∞) = 1. Kolmogorov
et al. [10] proved that when the reaction term is of KPP type (i.e. satisfying

conditions (1.2) and (1.3)), there exists a minimal speed c∗ = 2
√
f ′(0) such that a

traveling front propagating in the direction of −e with a speed c exists if and only
if c ≥ c∗ = 2

√
f ′(0). If we look at the equation

(1.4) ut = DΔu+ f(u),

for some positive constant D, then a simple rescaling yields that the minimal KPP
speed of (1.4) is given by c∗D = 2

√
D
√
f ′(0). One can then notice that in a homo-

geneous setting, the minimal speed is increasing with respect to the diffusion factor
(the map D �→ c∗D is increasing over (0,+∞)).

1.0.2. Heterogeneous framework, notation and setting. The result of Kolmogorov et
al. [10] has been generalized to media with periodic spatially dependent coefficients
(see [1], [17], [20], [21] for example) and to settings with space-time dependent
coefficients (see [2, 15, 16]). Here we recall some results which are very relevant to
this present work and we also introduce the setting that will be considered. The
equation that we will consider is of the type

(1.5) ut(t, z) = ∇z · (A(z)∇zu) + q(z) · ∇zu+ f(u), t ∈ R, z ∈ Ω,

where the domain Ω := R × ω is an unbounded C3 open connected subset of
R

N = R× R
N−1 (N ≥ 1). We represent each z ∈ Ω as

z = (x, y), x ∈ R, y ∈ ω.

In order to cover all possible cases, we will now give a generic description of ω
which appears in Ω when the space dimension is N > 1. The set ω is assumed to
have the following structure. There exists an integer d ∈ {0, . . . , N − 1} and L1 >
0, . . . , Ld > 0 so that an element y ∈ ω is represented by (y1, y2) ∈ R

d × R
N−1−d

and ⎧⎪⎨
⎪⎩

∃R ≥ 0 ; ∀ (y1, y2) ∈ ω, |y2| ≤ R,

∀ (k1, . . . , kd) ∈ L1Z× · · · × LdZ, ω = ω +
d∑

k=1

kiei,
(1.6)

where (ei)1≤i≤N is the canonical basis of RN .

• Notice that the case d = 0 corresponds to “ω is bounded”, and hence
Ω = R× ω is an infinite cylinder of section ω.

• In the cases where d ≥ 1, the set ω is unbounded.
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THE NON-MONOTONICITY OF THE KPP SPEED 3555

As particular examples of Ω, one can have the whole space R
N = R × R

N−1, in
which case d = N − 1. One can also have the whole space R

N except a periodic
array of holes (periodic perforations). In such a case, d is also equal to N − 1. For
N = 2, one has d ∈ {0, 1}. The case where d = 1 (with N = 2) means that ω is
unbounded connected and satisfies (1.6), and thus Ω = R

2. For N = 3, d can be
0, 1, or 2. The case where d = 1 corresponds to ω ⊂ R

2 bounded in one direction
and unbounded in the other one. In the unbounded direction, ω has to be periodic
with a period that we denoted by L1 in the general setting above. The case where
d = 2 corresponds to d = N − 1 and thus has been discussed above.

We mention that in all cases (even when d = 0) the domain Ω := R × ω has a
periodicity cell which we denote by C := [0, 1]× Cw where
(1.7){

Cω = ω, when d = 0,

Cω = {(y1, y2) = (y11 , . . . , y
d
1 , y2) ∈ ω, y11 ∈ [0, L1], . . . , y

d
1 ∈ [0, Ld]} otherwise.

Concerning the reaction term, we will deal only with non-linearities f depending
on u in order to achieve the proof of non-monotonicity of the speed with respect to
diffusion. Precisely, f is of the homogeneous KPP type (1.2)-(1.3).

The advection term, in this paper, is assumed to be a shear flow. That is, a
vector field q(x, y) = (q1(y), 0, . . . , 0) of class C1,α(Ω) (α > 0). The advection is
assumed to satisfy

(1.8)

⎧⎨
⎩

q1 is (L1, . . . , Ld)−periodic with respect to y (whenever d ≥ 1),∫
C

q1(y)dxdy = 0.

Obviously the above vector field satisfies

∇x,y · q = 0 in Ω and q · ν = 0 on ∂Ω,

where ν is the outward normal on ∂Ω and is given by ν = (0, νω), where νω is the
outward normal on ∂ω.

Let us now describe a wide class of diffusion coefficients for which the existence
of traveling fronts and minimal speed of propagation holds according to [1]. The
diffusion matrix A(x, y) = A(x, y1, y2) = (Aij(x, y))1≤i,j≤N is a symmetric C2,α( Ω )
(with α > 0) matrix field satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩

A is (1, L1, . . . , Ld)−periodic with respect to (x, y1),

∃ 0 < α1 ≤ α2; ∀(x, y) ∈ Ω, ∀ ξ ∈ R
N ,

α1|ξ|2 ≤
∑

1≤i,j≤N

Aij(x, y)ξiξj ≤ α2|ξ|2.
(1.9)

In the above setting where Ω = R × ω satisfies (1.6), q is of the type (1.8) and
A satisfies (1.9), one can rewrite (1.5) as

(1.10) ut(t, x, y) = ∇ · (A(x, y)∇u) + q1(y)∂xu+ f(u) in R× R× ω,

together with the boundary condition (in the cases where ∂ω = ∅)
(1.11) ν(x, y) ·A∇x,yu(t, x, y) = 0, (t, x, y) ∈ R× R× ∂ω.

Now in this non-homogenous setting, we set e = (1, 0, . . . , 0) ∈ R
N as the di-

rection of propagation. We recall from [1, 20, 21] that a pulsating traveling front
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3556 MOHAMMAD EL SMAILY

in the direction of −e that propagates with a speed c ∈ R is a classical solution
u = u(t, x, y) := φ(x+ ct, x, y) that connects 0 to 1 as follows:

lim
x→−∞

u(t, x, y) = 0 and lim
x→+∞

u(t, x, y) = 1

(locally in t and uniformly in (x, y)) and satisfies

u(t+
1

c
, x, y1 + k, y2) = u(t, x+ 1, y1, y2)

for any k ∈ L1Z×· · ·×LdZ. In terms of φ, the latter means that φ is 1-periodic in x
and (L1, . . . , Ld)−periodic in y1. Under the assumptions (1.6), (1.8), and (1.9) on
Ω, q and A, and having a KPP non-linearity (1.2)-(1.3), one knows from [1] that
there exists a minimal speed c∗ := c∗A,Ω,q,f (e) > 0 so that a pulsating traveling

front with a speed c exists if and only if c ≥ c∗Ω,A,q,f (e). The minimal speed c∗

has been expressed in terms of the coefficients of the reaction-advection-diffusion
problem via a variational formula which involves eigenvalue problems in [3] and
[20]. This formula has been used in many works to study various asymptotic and
homogenization regimes of pulsating traveling fronts (see for e.g. [4], [5], [6], [7], [8],
[11], [12], [14], [18], [22]). It has also been generalized to equations with time-space
dependent coefficients (almost periodic in time and periodic in space) in Shen [19].

2. The non-monotonicity of the minimal speed

with respect to diffusion (in the presence of an advection field)

Berestycki, Hamel, and Nadirashvili [3] proved (in part 2 of Theorem 1.10) that,
having any periodic domain Ω ⊆ R

N , q ≡ 0 and a constant growth rate f ′
u(x, y, 0)

(which holds in the case f = f(u)), the map β �→ c∗Ω,βA,0,f (e) is increasing in β > 0.
Nadin [14] has proved in Theorem 2.5 that the same result still holds even when
f ′
u(x, y, 0) depends on the spatial variables (x, y). However, we notice in results of
both [3, 14] the absence of an advection term.

Owing to Theorem 1.1 in [3], the map A �→ c∗Ω,A,q,f (e), where A varies in the or-

dered family1 of positive definite matrices satisfying (1.9), is well defined (provided
that Ω, q and f satisfy (1.6), (1.8) and (1.2)-(1.3)). Having those results in [3], [4]
and [14], there naturally arises the following question.

Question. Do we still have the increasing behaviour of the minimal speed with
respect to the diffusion factor β in the presence of an advection, even if the non-
linearity is homogenous? This question can be rephrased as: does the speed remain
monotonic over the family of diffusions proportional to a prefixed diffusion A in the
presence of an advection? We prove in this present work that this is not true in
the case where f is fixed and the advection q is large enough. Moreover, we give
a counterexample to the monotonicity of the speed with respect to diffusion in the
case where A and B are two non-proportional positive definite matrices satisfying
(1.9) and the advection field is arbitrarily chosen (it does not need to be large as
in the case of proportional diffusions).

Before starting to answer the above question, we mention that, in the KPP
setting, Majda and Souganidis [13] have discussed in detail the role of advection
and the possible failure of Huygens’ principle. The main point of [13] is that the

1We say that A = A(x, y) ≤ B = B(x, y) if and only if for each (x, y) ∈ Ω and for each ξ ∈ R
N ,

we have ξ · A(x, y)ξ ≤ ξ ·B(x, y)ξ. Also, we say that A < B if and only if for each (x, y) ∈ Ω and
for each ξ ∈ R

N \ {0}, we have ξ · A(x, y)ξ < ξ ·B(x, y)ξ.
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THE NON-MONOTONICITY OF THE KPP SPEED 3557

corresponding large-scale limit (corresponding to ε → 0) in the wave processes of
KPP-type reaction-diffusion equations does not generally evolve according to the
classical Huygens principle. It is also worth mentioning that Theorem 4.1 of Kiselev
and Zlatoš [9] gave, in the case of a combustion non-linearity (f having an ignition
temperature), a relation between the amplitude and the period of the advection
field q so that q acts as quenching (extinction happens).

As a matter of fact, in our setting, the presence of a shear flow will change
the monotonic behavior of the minimal speed with respect to diffusion. We prove
in Subsection 2.1 that the answer is negative in general even when the diffusion
matrices A and B are proportional to the identity matrix and the non-linearity
is homogenous. We give a counterexample when the advection is large (up to a
scaling, this gives a counterexample to the monotonicity of the speed with respect
to diffusion with a prefixed term and a small reaction). In Subsection 2.2, we
prove that for a fixed non-zero shear flow and a fixed reaction, the answer to the
second part of the question is negative in general for matrices A ≤ B which are
not equal up to a positive scalar. We mention that the second result cannot be
seen as a trivial consequence of the first one by using the argument that “a small
perturbation of the strict inequality (2.2) remains a strict inequality and one can
then perturb the diffusion matrices” (see more precise details at the beginning of
Subsection 2.2). Lastly, we mention that our counterexamples apply when the
diffusion matrices do not depend on the variable x. One knows that in such a case
the traveling fronts of the reaction-advection-diffusion problem (1.10) will have the
form φ(x + ct, y) and will be invariant with respect to the frame moving in the
direction −x (or −e). Moreover, we know that in a homogenous setting the speed
is monotone with respect to diffusion factors (see Section 1.0.1). Thus, the closer
we are to a homogeneous setting, the harder it is to prove non-monotonicity of the
KPP speed with respect to diffusion. Indeed, the setting where we construct our
counterexamples can be taken very close to the homogeneous one, with only one
heterogeneity coming from the advection. This gives sharpness to our results.

2.1. A counterexample in the case of proportional diffusions. In this sub-
section, we will show a reaction-advection-diffusion problem whose diffusion matrix
varies in the subfamily of positive definite matrices PDId = {β Id, β > 0} (where
Id stands for the N × N identity matrix), while a shear flow will make Part 2
of Theorem 1.10 in [3] valid no longer, even if the non-linearity f is taken to be
homogeneous. Let us first announce the following result.

Theorem 2.1. Let e = (1, 0, . . . , 0) ∈ R
N , Ω = R × ω ⊆ R

N satisfying (1.6)
where ω may or may not be bounded. Assume that the non-linearity f = f(u) is
a homogenous “KPP” non-linearity satisfying (1.2)-(1.3), and let us start with a
shear flow q(x, y) = (q1(y), 0, . . . , 0) defined over Ω such that q1 ≡ 0 (satisfying
(1.8) when d ≥ 1) and so that

(2.1) 0 < 2
√
f ′(0) + δ < max

y∈ω
(q1(y))− δ, for some δ > 0.

Then, there exists M1 := M1(δ) > 0 for which there corresponds 0 < ε1 :=
ε1(δ,M1) < M1 such that

(2.2) ∀0 < ε ≤ ε1 < M1, c∗
Ω,ε Id,

√
M1 q,f

(e) > c∗
Ω,M1Id,

√
M1q,f

(e).
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3558 MOHAMMAD EL SMAILY

Proof. Before going into further detail, we recall that the variational formula of
the KPP minimal speed (see [3] for example) yields the continuity of (κ, ρ, μ) �→
c∗Ω,κA,ρq,μf (e) with respect to κ > 0, μ > 0 and ρ ∈ R. This continuity with respect
to the factors of the reaction, diffusion and advection will be useful in constructing
our proof. Due to the presence of several parameters in the problem, we proceed
in simple steps.

Step 1. In the author’s work [4], an asymptotic regime for the speed c∗ within large
diffusions MA together with advection fields of the form Mγq was proved (where
M → +∞). The exponent γ was allowed to be any number in the interval (0, 1/2].
Precisely, Theorem 4.1 of [4], with γ = 1/2, yields that

lim
M→+∞

c∗
Ω,M Id,

√
M q, f

(e)
√
M

= 2
√
f ′(0).

Using the above together with the continuity of c∗ with respect to M , there then
exists M0 := M0(δ) > 0 such that

∀M ≥ M0(δ), 0 < c∗
Ω,M Id,

√
M q, f

(e) <
√
M

(
2
√
f ′(0) + δ

)
.

Step 2. We fix M1 > max(1,M0(δ)). Then,

(2.3) 0 < c∗
Ω,M1 Id,

√
M1q, f

(e) <
√
M1

(
2
√
f ′(0) + δ

)
.

Step 3. For the fixed number M1, we also have
√
M1 q in the form of shear flow. We

now look at the effect of small diffusion while
√
M1 q is considered as an advection

field. Indeed, Theorem 3.3 of El Smaily [4] yields that

lim
ε→0+

c∗
Ω,ε Id,

√
M1 q,f

(e) = max
y∈ω

(
√
M1q1(y)) =

√
M1 max

y∈ω
(q1(y)).

Consequently, there exists ε1 = ε1(δ,M1) ∈ (0,M1) (we can choose ε1 as small as
we like) such that

(2.4)

∀ 0 < ε ≤ ε1, c∗
Ω,ε Id,

√
M1q, f

(e) >
√
M1 max

y∈ω
(q1(y))− δ

>
√
M1

[
max
y∈ω

(q1(y))− δ

]
> 0.

Step 4. Owing to (2.1), (2.3) and (2.4), one then gets

∀ 0 < ε ≤ ε1, c
∗
Ω,ε Id,

√
M1 q,f

(e) > c∗
Ω,M1Id,

√
M1q,f

(e),

and this completes the proof. �

2.2. Case of non-proportional diffusions (another counterexample). In
Subsection 2.1, we saw that a prefixed advection field was multiplied by a large
enough constant M1 in order to spoil the increasing behavior of the minimal speed
with respect to diffusion matrices which are proportional to the identity matrix.
A simple scaling of the reaction-advection-diffusion equations that correspond to
Theorem 2.1 implies that, under the same notation,

c∗
Ω,(ε/

√
M1)Id,q,f/

√
M1

(e) > c∗
Ω,

√
M1Id,q,f/

√
M1

(e),

and by continuity of the minimal speed with respect to diffusion coefficients, one can
then find non-proportional matrices A and B (in the neighborhood of (ε/

√
M1)Id
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THE NON-MONOTONICITY OF THE KPP SPEED 3559

and
√
M1Id respectively) that satisfy the general assumptions of Section 1 and such

that A < B and

c∗
Ω,A,q,f/

√
M1

(e) > c∗
Ω,B,q,f/

√
M1

(e).

This can be summarized as a perturbation argument applied to a strict inequality.
However, we notice that the latter inequality corresponds to reaction terms which
are small. The importance of the result we give in this subsection is that it leads to
the construction of a counterexample to the monotonicity of the speed with respect
to diffusion while q and f are prefixed (neither small nor large). It turns out that
the counterexample given in Theorem 2.3 concerns diffusion matrices which are
non-proportional by construction and not by a perturbation argument of the result
of the previous section.

Notation 2.2. For each b > 0, let Ab denote the N ×N symmetric positive definite
matrix having the form

Ab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

0 b
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2.3. Let e = (1, 0, . . . , 0) ∈ R
N , Ω = R×ω ⊆ R

N , where ω can be either
bounded or unbounded satisfying (1.6), and let q = (q1(y), 0, . . . , 0) be a shear flow
satisfying (1.8), where q1 ≡ 0 on ω. Assume that the non-linearity satisfies (1.2)-
(1.3). For each b > 0, consider the reaction-advection-diffusion problem
(2.5)⎧⎪⎨

⎪⎩
ut(t, x, y) = ∇ · (Ab∇u) + q1(y)∂xu+ f(u)

= ∂xxu+ bΔyu+ q1(y)∂xu+ f(u) in R× Ω,

ν(x, y) ·Ab∇x,yu = νω(y) · ∇yu(t, x, y) = 0 for (t, x, y) ∈ R× R× ∂ω,

where Ab is the matrix introduced in Notation 2.2. Then,

(2.6) lim
b→+∞

c∗Ω,Ab,q,f
(e) = 2

√
f ′(0),

(2.7) lim
b→0+

c∗Ω,Ab,q,f
(e) = max

ω
(q1(y)) + 2

√
f ′(0).

Proof. Consider the following change of variables:

∀(t, x, y) ∈ R× R× ω, v(t, x, y) = u(t,
x√
b
, y).

Thus, ∀(t, x, y) ∈ R× R× ω,

vt(t, x, y) = ut(t,
x√
b
, y), ∂xv(t, x, y) =

1√
b
∂xu(t,

x√
b
, y),

∂xxv(t, x, y) =
1

b
∂xxu(t,

x√
b
, y) and Δyv(t, x, y) = Δyu(t,

x√
b
, y).

Owing to the invariance of Ω in the x−direction, we have the boundary condition

∀(t, x, y) ∈ R× ∂Ω, ν(x, y) · ∇x,yv(t, x, y) = 0.
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Consequently, problem (2.5) is equivalent to the problem

(2.8)

⎧⎪⎪⎨
⎪⎪⎩

vt(t, x, y) = b∂xxv + bΔyv +
√
b q1(y)∂xv(t, x, y) + f(v)

= bΔx,yv +
√
b q1(y)∂xv + f(v) in R× R× ω,

ν(x, y) · ∇x,yv(t, x, y) = 0 for (t, x, y) ∈ R× R× ∂ω.

The minimal speed of problem (2.8) exists in this setting (according to The-
orem 1.2 in [1]) and is denoted here by c∗

Ω,b Id,
√
b q,f

(e), where Id stands for the

identity N ×N matrix. As in the proof of Theorem 2.1, we apply Theorem 4.1 of
[4] with γ = 1/2 to conclude that

(2.9) lim
b→+∞

c∗
Ω,b Id,

√
bq,f

(e)
√
b

= 2
√
f ′(0).

On the other hand, looking at problems (2.5) and (2.8) and the relation between
u and v and owing to the minimality (uniqueness) of the threshold c∗, one knows
that the corresponding minimal speeds have the following relation:

(2.10) ∀b > 0, c∗
Ω,b Id,

√
b q, f

(e) =
√
b c∗Ω,Ab,q,f

(e).

Together with (2.9), we obtain that

lim
b→+∞

c∗Ω,Ab,q,f
(e) = 2

√
f ′(0). �

Proof of (2.7). For the limit as b → 0+, we know from the rescaling formula (2.10)
that proving (2.7) is equivalent to proving that

(2.11) lim
b→0+

c∗
Ω,bId,

√
b q, f

(e)
√
b

= max
ω

(q1(y)) + 2
√
f ′(0).

Indeed, one can apply similar techniques to those used in the proof of Theorem 3.3
of [4] (ζ replaced by f ′(0)) to prove this. For the sake of completeness, we do the
proof here in detail. One knows that c∗

Ω,bId,
√
b q, f

(e) is given by the variational

formula of [3]:

(2.12) ∀b > 0, c∗
Ω,bId,

√
b q, f

(e) = min
λ>0

k(λ)

λ
,

where k(λ) is the principal eigenvalue of the following problem:

(2.13)
LΩ,e,bId, q,f,λ ψ = bΔψ + 2bλe · ∇ψ +

√
bq1(y)∂xψ

+
[
bλ2 + λ

√
bq1(y) + f ′(0)

]
ψ in Ω = R× ω,

with the boundary conditions ν · ∇ψ = λν · eψ on ∂Ω. The eigenfunction ψ =
ψ(x, y1, y2) is positive in Ω, 1-periodic in x, (L1, . . . , Ld)−periodic in y1, and unique
up to multiplication by a non-zero constant. Now, having the coefficient q1 inde-
pendent of x, this yields that one can choose ψ independent of x. Hence, the elliptic
operator LΩ,e,bId,

√
bq,f,λ can be reduced to the symmetric operator

LΩ,e,bId,
√
bq,f,λ ψ = bΔψ +

[
bλ2 + λ

√
bq1(y) + f ′(0)

]
ψ.
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Consequently, we have the following Rayleigh quotient over H1(Cω), where Cω is
the periodicity cell of ω introduced in Section 1 above:
(2.14)
∀λ > 0, ∀b > 0,

−k(λ)= min
ϕ∈H1(Cω)\{0}

b

∫
Cω

|∇ϕ|2dy − λ
√
b

∫
Cω

q1(y)ϕ
2 −

∫
Cω

[
λ2b+ f ′(0)

]
ϕ2(y)dy

∫
Cω

ϕ2(y)dy

.

Formula (2.14) leads directly to the upper bound

∀λ > 0, ∀b > 0,
k(λ)

λ
√
b
≤ max

y∈ω
(q1(y)) + λ

√
b+

f ′(0)

λ
√
b
.

Testing the right hand side at λ0 =
√

f ′(0)
b , one then concludes that

∀b > 0, min
λ>0

k(λ)

λ
√
b
≤ max

y∈ω
(q1(y)) + 2

√
f ′(0),

and hence

(2.15) lim sup
b→0+

c∗
Ω,bId,

√
b q, f

(e)
√
b

≤ max
y∈ω

(q1(y)) + 2
√
f ′(0).

For the sharp lower bound of the lim inf as b → 0+, we proceed as follows. Let y0 be
a point of Cω ⊆ ω where the periodic function q1(y) attains its positive maximum
(we recall here that q1 ≡ 0, q1 is periodic in y and has a zero average over Cw,
and thus the point y0 is in the interior of the cell Cω). Then, by the definition of
a maximum point of a continuous function, for each 0 < δ < q1(y0), there exists a
neighborhood Uδ ⊂ Cω of y0 such that

∀y ∈ Uδ, q1(y) ≥ q1(y0)− δ ≥ 0.

Now we test the Rayleigh quotient against a smooth function φ(y) compactly sup-
ported in Uδ and normalized by

∫
Cω

φ2dy = 1 to get (after switching from −k(λ)

to +k(λ))

(2.16)
k(λ)

λ
≥ λb+

1

λ
β(b) +

√
b(q1(y0)− δ),

where β(b) = f ′(0) − b

∫
Uδ

|∇φ|2. We notice that β(b) > 0 for 0 < b < b0 :=

f ′(0)∫
Uδ

|∇φ|2
. The function λ �→ λb +

1

λ
β(b) attains its minimum over (0,+∞) at

λ∗ =
√

β(b)
b , and the value of this minimum is 2

√
b
√
β(b). Referring to (2.16), one

then gets

∀0 < b < b0, ∀λ > 0,
k(λ)

λ
≥ 2

√
b
√
β(b) +

√
b(q1(y0)− δ).

The right hand side of the last inequality is independent of λ. Thus, the variational
formula (2.12) yields that

∀0 < b < b0,
c∗
Ω,bId,

√
b q, f

(e)
√
b

≥ 2
√
β(b) + (q1(y0)− δ),
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for all 0 < δ < q1(y0). Thanks to the non-dependence of Uδ on b, we pass to the
limit as b → 0+ to get

∀0 < δ < q1(y0), lim inf
b→0+

c∗
Ω,bId,

√
b q, f

(e)
√
b

≥ 2
√
f ′(0) + (q1(y0)− δ).

This is enough to conclude that

(2.17) lim inf
b→0+

c∗
Ω,bId,

√
b q, f

(e)
√
b

≥ 2
√
f ′(0) + (q1(y0))

and, together with (2.15), finishes the proof of (2.7). �

A counterexample as an application of Theorem 2.3. Let e = (1, 0, . . . , 0) and Ω =
R×ω (in particular, Ω can be taken as the whole space RN ). Choose f = f(u) and

q = (q
1
(y), 0, · · · , 0) with

∫
C

q
1
(y)dy = 0 and q1 ≡ 0. Thus there exists δ > 0 such

that

2
√
f ′(0) + δ < max

y∈ω
(q1(y)) + 2

√
f ′(0)− δ.

It follows from Theorem 2.3 above and from the continuity of the speed with respect
to the diffusion factor (variational formula of [3]) that there exist ε0 > 0 andM0 > 0
such that

∀0 < ε ≤ ε0, c∗Ω,Aε,q,f (e) > max
y∈ω

(q1(y)) + 2
√
f ′(0)− δ and

∀M ≥ M0 > 0, c∗Ω,AM ,q,f (e) < 2
√
f ′(0) + δ.

Consequently, choosing ε small enough and M large enough, it follows that
AM ≥ Aε in the sense of order relation on positive definite matrices; however,

c∗Ω,AM ,q,f (e) < c∗Ω,Aε,q,f (e).

Therefore the answer to the second part of the question is negative in general
even when the advection is a fixed shear flow and the non-linearity f is fixed and
homogenous. �
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