Evolution in heterogeneous media with large drift Summer School on nonlinear evolutions

HCM, University of Bonn

Mohammad El Smaily¹

Department of Mathematics, American University of Beirut

July 17, 2015

 $^{^1 \}text{Part}$ of this research was funded by the NSERC-PDF 6790-403487 (2012-2014) at University of Toronto

Outline

1 Background and particular features

- A brief description of reaction-advection-diffusion
- Evolution in homogeneous settings
- Heterogeneous settings (Variational formula)

2 Deterministic analysis on the influence of large advection

- In any spatial dimension N
- Sharp Criteria: speed-up by flows in 2D
- Sharp Criteria: speed-up by flows in 3D

3 Open questions

Introduction

- Introduced in 1937 simultaneously by Fisher, and Kolmogorov-Petrovskii-Piskunov, the celebrated F-KPP equation describes various reaction-diffusion phenomena which give rise to front propagation.
- Plays a central role in various models related to combustion, chemistry, biology and ecology
- (indeed, Fisher's original goal was to study how an advantageous allele spreads in a geographically distributed population).
- To a large extent, the F-KPP equation started the field of semi-linear parabolic differential equations
- This equation is intimately connected with a class of probabilistic models, (*branching random walks*) — in a way similar to the relation between the heat equation and the standard Brownian motion.

How do reaction-advection-diffusion equations appear?

- Let u(t, z) denote the concentration/density of certain organism or chemical at time t and location $z \in \Omega \subseteq \mathbb{R}^N$ $(N = 1, 2, 3, \cdots)$
- In population dynamics, Ω is the habitat, u(t, z) is always associated with a scale, like country, city, town, and street.
- In any sub-region $O \subseteq \Omega$ containing z,

total population (or material)
$$= \int_O u(t,z) dz$$

■ The Diffusion mechanism: on ∂*O*, "stuff" moves from regions with high density to others with lower density *as quickly as possible*:

$$z \in \partial O$$
, diffusive flux vector $= J_{diffusive} = -A(z) \nabla_z u$

Divergence theorem:

Total diffusive flux=
$$\int_{\partial O} (-A\nabla u) \cdot n \ d\sigma = + \int_{O} \nabla \cdot (A(z)\nabla_z u) dz$$

M. El Smaily (AUB)

Propagation in a large flow

Appearance of reaction and advection

- Reaction: at location $z \in O$, u(t, z) can change due to factors such as birth, death, hunting, or chemical reactions. The amount of change due to such reasons is f(t, z, u), the reaction term.
- So the net growth (in O) is $\int_{O} f(t, z, u(t, z)) dz$
- Some variations inside the medium result from moving flows with velocity q (water, chemicals). Then,

Advective flux :
$$J_{adv} = \int_{\partial O} \vec{q} u \cdot n = -\int_{O} \nabla \cdot (qu) dz$$

$$\frac{d}{dt} \int_{O} u(t,z) dz = \underbrace{\int_{O} \nabla \cdot (A \nabla_z u) dz}_{\text{diffusive flux}} \pm \underbrace{\int_{O} q \cdot \nabla u dz}_{\text{advective flux}} + \int_{O} f(t,z,u) dz$$
Since *O* is arbitrary, we can drop the integrals and get the reaction-**advection**-diffusion model

$$u_t =
abla_z \cdot (A(z)
abla_z u) + q \cdot
abla u + f(t, z, u) ext{ for } (t, z) \in \mathbb{R} imes \Omega$$

M. El Smaily (AUB)

Propagation in a large flow

Key features

- Reaction-advection-diffusion equations enjoy a nice feature: traveling waves or pulsating traveling waves (depending on the nature of the framework).
- Pulsating traveling fronts were introduced (in the general sense) in Weinberger 2002, Berestycki-Hamel-Nadirasvilli (2002-2005)
- Before that, motivations from math-biology and ecology papers: S-K-T 1988, and J-Xin 1999.

In purely diffusive media

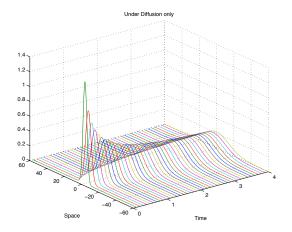


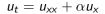
Figure: Thinking of $u_t = \mathbf{d} u_{xx}$

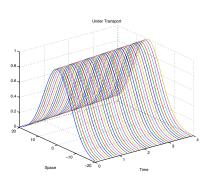
M. El Smaily (AUB)

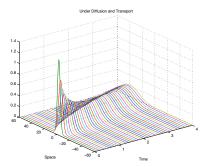
Propagation in a large flow

Transport equation versus diffusion-advection

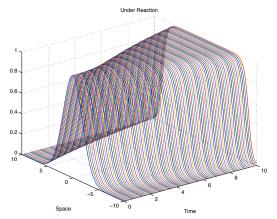
$$u_t = \alpha u_x, \ u(0, x) = u_0(x)$$



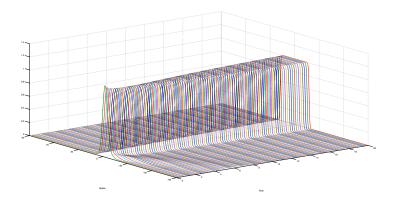




Logistic growth
$$u_t(t,x) = u(1-u), u_0(x) = e^{-x^2}$$
. Then, $u(t,x) = \frac{u_0(x)e^t}{1+u_0(x)(e^t-1)}$



Traveling fronts (space-time)



Travelling fronts

A homogeneous reaction-diffusion equation of the form:

$$u_t(t,x) = \Delta u + f(u) \quad t \in \mathbb{R}, \ x \in \mathbb{R}^N.$$
 (1)

• f(0) = f(1) = 0, no advection term $(q \cdot \nabla u)$, isotropic medium.

Definition (Travelling Fronts)

Given a direction $e \in \mathbb{R}^N$, travelling fronts propagating in the direction of -e and with a speed $c \in \mathbb{R}$ were introduced as solutions of (1) in the form $u(t,x) = \phi(x \cdot e - ct) = \phi(s)$ satisfying the limiting conditions $\phi(-\infty) = 1$ and $\phi(+\infty) = 0$.

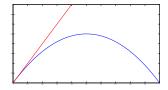
Typical nonlinearities (KPP or logistic map)

- $f(u) = b(u) d(u) = u u^2$ (see b = u as the birth rate, and $d = u^2$ as the death rate).
- (1) then corresponds to biological invasion of the unstable state 0 by the stable state 1 (Aronson, Weinberger, Lewis, Diekmann, SKT, many others)

f = f(u) is called a homogenous KPP nonlinearity when

 $f(0) = f(1) = 0, f \equiv 0 \text{ in } \mathbb{R} \setminus [0,1], \ 0 < f(s) \leq f'(0)s, \ s \in (0,1).$

• Typical example:
$$f(u) = u(1 - u)$$
 on $[0, 1]$.



First known result about travelling fronts

Theorem (Kolmogorov-Petrovsky-Piskunov, 1937)

Having a KPP nonlinearity, a TF exists with a speed c iff $c \ge 2\sqrt{f'(0)}$. Moreover, this TF u(t,x) is decreasing in t.

$$c^* = 2\sqrt{f'(0)}$$

is the minimal speed in the homogeneous case (there is no advection.)

- Notice that f'(0), the growth rate at u = 0, is the only appearance of the reaction in the formulation of the minimal speed.
- Also, $u_t = \Delta u + f(u)$ can be rewritten in this case as

$$\phi''(s) + c\phi'(s) + f(\phi(s)) = 0 \text{ for all } s \in \mathbb{R}$$
(2)

M. El Smaily (AUB)

Propagation in a large flow

A basic PDE idea proving the KPP theorem

KPP used a phase-portrait analysis and ODE tools to prove their result. A PDE approach (inspired by Nirenberg-Berestycki 1990) will make us see things more clearly (in heterogeneous settings)

• Over any interval $(-a, a) \subset \mathbb{R}$, the nondecreasing function

$$\overline{\phi}^{a,r}(s) := \min(e^{-\lambda s + r}, 1)$$

is a super-solution over (-a, a) of (2) whenever $c \ge 2\sqrt{f'(0)}$ and $\lambda_1(c) \le \lambda \le \lambda_2(c)$, where λ_1 and λ_2 are the real solutions to

$$\lambda^2 - c\lambda + f'(0) = 0,$$

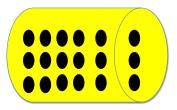
whose discriminant is equal to $c^2 - 4f'(0)$.

In heterogeneous (periodic) media

$$u_t = \nabla \cdot (A(z)\nabla u) + q(z) \cdot \nabla u + f(z, u), \ t \in \mathbb{R}, \ z \in \Omega,$$

$$\nu \cdot A(z)\nabla u = 0 \ \text{on } \mathbb{R} \times \partial \Omega.$$
(3)

• $\Omega \subseteq \mathbb{R}^d_x \times \mathbb{R}^{N-d}_y$, • Ω is bounded in the *y*-directions, Ω is periodic in the *x*-directions.



Set up, Notations

- Periodicity cell $C := \Omega/L_1\mathbb{Z} \times \cdots L_d\mathbb{Z} \times \{0\}^{N-d}$
- Coefficients: A, q, and f(x, y, u) are (L_1, \dots, L_d) -periodic in x.
- The advection term $q \cdot \nabla u$: q is divergence free, of zero-average C

Definition (Pulsating travelling fronts, 2002)

A PTF, propagating in the direction of -e with a speed c, is a solution

$$u(t, x, y) = \phi(s, x, y) = \phi(x \cdot e - ct, x, y)$$

L-periodic in x, $\phi(-\infty, \cdot, \cdot) = 0$, $\phi(+\infty, \cdot, \cdot) = 1$ uniformly in $(x, y) \in \Omega$.

Shigesada-Kawasaki-Teramoto (1988)

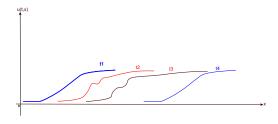
used these models (1D) to study the *growth and spreading* of an invading species in a forest which consists of trees planted in periodic rows.

M. El Smaily (AUB)

Propagation in a large flow

Pulsating Travelling Fronts

 A remark on the stationary states: All remains true when the stationary states of the equation are 0 (unstable) and p(x, y) (space-dependent) as long as the domain Ω has the periodicity structure in the unbounded spatial directions



Existence, KPP minimal speed, Variational formula

Theorem (Berestycki and Hamel, CPAM 2002)

For any prefixed $e \in \mathbb{R}^d$, there exists a minimal speed $c^* := c^*_{\Omega,q,f}(e) > 0$ such that a PTF with a speed c exists if and only if $c \ge c^*$.

$$c^*(q,e) = \min_{\lambda > 0} rac{k(\lambda)}{\lambda}$$

 $k(\lambda)$ is the principal eigenvalue of the elliptic operator L_{λ} defined by $L_{\lambda}\psi := \Delta\psi - 2\lambda\tilde{e}\cdot\nabla\psi + \mathbf{q}\cdot\nabla\psi + [\lambda^2 - \lambda\mathbf{q}\cdot\tilde{e} + \zeta]\psi$ in Ω , on

 $E_{\lambda} = \left\{ \psi(x, y) \in C^{2}(\overline{\Omega}), \psi \text{ L-periodic in } x, \nu \cdot \nabla \psi = -\lambda(\nu \cdot \tilde{e})\psi \text{ on } \partial \Omega \right\}.$

Inspired by: Aronson-Weinberger 1978, Nirenberg 1991, S-K-T 1989, , Weinberger 2000, O. Diekmann, J. Xin 2000, Weinberger-Lewis 2002, ...

M. El Smaily (AUB)

Propagation in a large flow

Propagation in a flow (spreading of initial-data)

A simple example: milk spreading in a cup of coffee which is being stirred. u(t, x, y) is the concentration of milk at location (x, y), at time t.

- Which flows (stirring strategies) give an optimal speed up of the spreading?
- Are there flows which could block the spreading?

"Drift Paradox" [(2005) Pachepsky, Lutscher, Nisbet, Lewis MA]: Why aquatic insects faced with downstream drift are able to persist in upper **stream reaches** (1d uni-directional drift)

"Residence in the immobile state always enhances population persistence."

Connecting the problem to variational analysis

Question: Study the asymptotic behaviour of the minimal speed c^* when the amplitude of q is large? Known before 2012: $c^*(M) = O(M)$ as $M \to +\infty$.

Propagation with large drift Mq, $(M \rightarrow +\infty)$

$$\left\{ \begin{array}{l} u_t = \Delta u + Mq(x,y) \cdot \nabla u + f(x,y,u), \ t \in \mathbb{R}, \ (x,y) \in \Omega, \\ \\ \nu \cdot \nabla u = 0 \ \ \text{on} \ \mathbb{R} \times \partial \Omega. \end{array} \right.$$

 $k(\lambda, M)$ is the principal eigenvalue of the elliptic operator L_{λ} $L_{\lambda}\psi := \Delta\psi - 2\lambda\tilde{e}\cdot\nabla\psi + M\,q\cdot\nabla\psi + [\lambda^2 - \lambda M\,q\cdot\tilde{e} + \zeta]\psi$ in Ω , $c^*(M, e) = \min_{\lambda>0} \frac{k(\lambda, M)}{\lambda}$

Helpful test functions: first integrals

Analogous objects were introduced by Ryzhik, Novikov, Constantin and A. Zlatos (Annals of Math, 2005) "relaxation enhancing flows" in linear elliptic, parabolic problems.

Definition (First integrals)

The family of first integrals of the advective field q is defined by

$$\mathcal{I} := \{ w \in H^1_{loc}(\Omega), w \neq 0, w \text{ is } L - \text{periodic in } x, \text{ and} \\ q \cdot \nabla w = 0 \text{ almost everywhere in } \Omega \}.$$

- The set *I* contains constant functions which are the "trivial first integrals". We'll see that *I* depends strongly on the space dimension *N*.
- Note that if $w \in \mathcal{I}$ is a first integral of q and $\eta : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function, then $\eta \circ w \in \mathcal{I}$.

M. El Smaily (AUB)

Propagation in a large flow

Helpful test functions: first integrals

Analogous objects were introduced by Ryzhik, Novikov, Constantin and A. Zlatos (Annals of Math, 2005) "relaxation enhancing flows" in linear elliptic, parabolic problems.

Definition (First integrals)

The family of first integrals of the advective field q is defined by

$$\mathcal{I} := \{ w \in H^1_{loc}(\Omega), w \neq 0, w \text{ is } L - \text{periodic in } x, \text{ and} \\ q \cdot \nabla w = 0 \text{ almost everywhere in } \Omega \}.$$

- The set I contains constant functions which are the "trivial first integrals". We'll see that I depends strongly on the space dimension N.
- Note that if $w \in \mathcal{I}$ is a first integral of q and $\eta : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function, then $\eta \circ w \in \mathcal{I}$.

The speed-up limit in any dimension N

Theorem (El Smaily-Kirsch, Adv. in Diff. Eqs, 2012)

Fix a unit direction $e \in \mathbb{R}^d$. Then,

$$\lim_{M \to +\infty} \frac{c^*(Mq, e)}{M} = \max_{w \in \mathcal{I}} \frac{\int_C (q \cdot \tilde{e}) w^2}{\int_C w^2}.$$
 (4)

- This specific question had been open for more than 10 years,
- Partial answers were given by Nadirashvilli, Hamel, Berestycki (upper and lower bounds), Heinze (shear flows), Zlatoš (several works).

Sharp criteria (N = 2)

- Previous theorem says that, in any dimension, the best we can expect is a linear (w.r.t amplitude M) speed-up
- Question: When is the limit $c^*(M)/M > 0$?
- Using probabilistic tools, Rhyzik-Novikov (2008) proved that cellular-flows cannot do a linear speed up: q is cellular \implies $c^*(M) = O(M^{1/4})$.

Theorem (El Smaily - Kirsch, Adv. in Diff. Eqs)

Assume that N = 2. The following two statements are equivalent:

(i) There exists
$$w \in \mathcal{I}$$
, such that $\int_{\mathcal{L}} qw^2 \neq 0$.

(ii) There exists a periodic unbounded trajectory T(x) of q in Ω .

When (ii) holds and T_x is **a**-periodic, then $\forall w \in \mathcal{I}, \int_C q w^2 \in \mathbb{R}$ **a**.

Precise description of the "best" flows in 2D

Assume that N = 2. Then,

(i) If there exists no periodic unbounded trajectory of q in Ω , then

$$\lim_{M \to +\infty} \frac{c^*_{\Omega, M \, q, f}(e)}{M} = 0, \text{ for any unit direction } e.$$

(ii) If \exists a periodic unbounded trajectory T_x of q in Ω then

$$\lim_{M\to+\infty}\frac{c^*_{\Omega,\boldsymbol{M}\,\boldsymbol{q},f}(\boldsymbol{e})}{M}>0\iff \tilde{\boldsymbol{e}}\cdot\boldsymbol{a}\neq 0.$$

An unclear situation (yet in 2D)

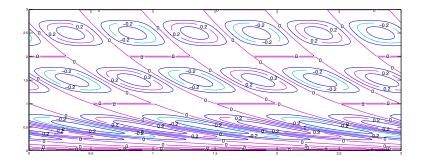
There may exist unbounded trajectories which are not periodic, even though the vector field q is periodic:

A periodic vector field whose unbounded trajectories are not periodic!

$$\phi(x,y) := \begin{cases} e^{-\frac{1}{\sin^2(\pi y)}} \sin(2\pi(x + \ln(y - [y]))) \text{ if } y \notin \mathbb{Z}, \\ 0 \text{ otherwise.} \end{cases}$$

- **1** ϕ is C^{∞} on \mathbb{R}^2 , 1-periodic in x and y. Hence, $q = \nabla^{\perp} \phi$ is also C^{∞} , 1-periodic in x and y, and $\int_{[0,1]\times[0,1]} q = 0$ with $\nabla \cdot q \equiv 0$.
- 2 The part of the graph of $x \mapsto e^{-x}$ lying between y = 0 and y = 1 is a trajectory of q, and is unbounded and not periodic.

Shear-cellular flow?



- Our result, applied to this type of flows, yields $\lim_{M\to\infty} \frac{c^*(Mq)}{M} = 0$.
- Other results (Ryzhik et al., 2008) do not apply to this flow, as it is not cellular.
- Open: for such flows, find the sharp asymptotic regime of the speed.

Some details about the case N = 2

Proposition (Representation via a Stream function:)

Let d = 1 or 2 where d is as defined before. Let $q = q(x, y) \in C^{1,\delta}(\overline{\Omega})$, L-periodic with respect to x and satisfying the conditions

$$\int_C q_i = 0, (1 \le i \le d) \quad \nabla \cdot q = 0 \text{ in } \Omega, \quad q \cdot \nu = 0 \text{ on } \partial \Omega.$$

Then, there exists $\phi \in C^{2,\delta}(\overline{\Omega})$, L-periodic in x, such that $q = \nabla^{\perp} \phi$ in Ω . Moreover, ϕ is constant on every connected component of $\partial \Omega$.

• We extend \hat{q} defined over $\hat{\Omega}$ to $\overline{\hat{q}}$ over T by $\overline{\hat{q}} = 0$ over $T \setminus \hat{\Omega}$. In the sense of distributions $\overline{\hat{q}}$ will be also "incompressible" (thanks to the assumption $q \cdot \nu = 0$ over $\partial \Omega$).

"Regular enough" first integrals are more available now

Corollary

Let $\mathcal{J} := \{\eta \circ \phi, \text{ such that } \eta : \mathbb{R} \to \mathbb{R} \text{ is Lipschitz}\}, \phi \text{ is s.t.}$ $q = \nabla^{\perp} \phi := R_{\pi/2}(\nabla \phi).$ Then, $\mathcal{J} \subset \mathcal{I}.$

Useful notation: *T* := ℝ²/(L₁ℤ × L₂ℤ) and Ω̂ := Ω/(L₁ℤ × L₂ℤ) if *d* = 2, *T* := ℝ²/(L₁ℤ × {0}) and Ω̂ := Ω/(L₁ℤ × {0}) if *d* = 1. ∇[⊥]φ · ν = q · ν = 0 on ∂Ω ⇒ φ is constant on every connected component of ∂Ω. φ̃ is constant on every connected component of *T*\Ω̂.

M. El Smaily (AUB)

Propagation in a large flow

July 17, 2015 28 / 38

The first integrals of the form $w = \eta \circ \phi$

$$\forall w \in \mathcal{J}, \text{ we have } \int_C (q \cdot \tilde{e}) w^2 = 0:$$

Note that

$$w = \eta \circ \phi \text{ and } q = \nabla^{\perp} \phi \implies \int_{C} (q \cdot \tilde{e}) w^{2} = \tilde{e} \cdot \int_{C} (\nabla^{\perp} \phi) \eta^{2}(\phi)$$
$$= \tilde{e} \cdot R \int_{C} \nabla (F \circ \phi) = \tilde{e} \cdot R \int_{\hat{\Omega}} \nabla (F \circ \tilde{\phi}).$$

where *R* the matrix the rotation of angle $\pi/2$, $F' = \eta^2$, $\tilde{\phi}$ is constant on every connected component of $T \setminus \hat{\Omega}$, and so is $F \circ \tilde{\phi}$.

Hence,
$$\int_{T \setminus \hat{\Omega}} \nabla \left(F \circ \tilde{\phi} \right) = 0.$$

•
$$\int_C (q \cdot \tilde{e}) w^2 = \tilde{e} \cdot R \int_T \nabla \left(F \circ \tilde{\phi} \right) = 0$$
 as T has no boundary.

M. El Smaily (AUB)

Propagation in a large flow

July 17, 2015 29 / 38

Sketch of the proof of the sharp criterion in 2d Lemma (El Smaily-Kirsch)

Let \hat{V} be an open subset of $\hat{\Omega}$, and $\hat{\phi}$ given by $\hat{q} = \nabla^{\perp} \hat{\phi}$. Suppose that:

- $\hat{q}(\hat{x}) \neq 0$ for all $\hat{x} \in \hat{V}$,
- The level sets of $\hat{\phi}$ in \hat{V} are all connected.

Then, for every $w \in \mathcal{I}$, there exists a continuous function $\eta : \hat{\phi}(\hat{V}) \to \mathbb{R}$ such that $\hat{w} = \eta \circ \hat{\phi}$ on \hat{V} .

• Define the set of "regular trajectories" in $\hat{\Omega}$:

 $\hat{U} := \left\{ \hat{x} \in \hat{\Omega} \text{ such that } T(\hat{x}) \text{ is well defined and closed in } \overline{\hat{\Omega}}
ight\}.$

Lemma

The set \hat{U} is exactly the union of the trajectories that are simple closed curves in $\hat{\Omega}$.

The bad set is not bad (Sard's lemma & Co-area formula)

$$W:=\left\{\hat{x}\in\hat{\Omega} ext{ such that } \hat{\phi}(\hat{x}) ext{ is a critical value of } \hat{\phi}
ight\}$$

$$\int_{C} qw^{2} = R \int_{C} (\nabla \phi) w^{2} = R \int_{\hat{\Omega}} (\nabla \hat{\phi}) \hat{w}^{2}.$$

$$\text{Co-area} \Longrightarrow \left| \int_{W} \hat{w}^{2} \nabla \hat{\phi} \right| \leq \int_{W} \hat{w}^{2} |\nabla \hat{\phi}| = \int_{\hat{\phi}(W)} \left(\int_{\hat{\phi}^{-1}(t)} \hat{w}^{2}(x) \right) dt.$$

- From Sard's Lemma, since φ̂ is C², L¹(φ̂(W)) = 0 (L¹ denotes the Lebesgue measure on ℝ.)
- We then get

$$\int_W \hat{w}^2 \nabla \hat{\phi} = 0.$$

• Since $\hat{\Omega} \setminus W \subset \hat{U} \subset \hat{\Omega}$, we get (letting \hat{U}_i be the connected compts of \hat{U})

$$\int_C qw^2 = R\left(\int_{\hat{\Omega}} (\nabla\hat{\phi})\hat{w}^2\right) = R\left(\int_{\hat{U}} (\nabla\hat{\phi})\hat{w}^2\right) = R\left(\sum_i \int_{\hat{U}_i} (\nabla\hat{\phi})\hat{w}^2\right).$$

M. El Smaily (AUB)

Propagation in a large flow

July 17, 2015 31 / 38

Lemma (El Smaily-Kirsch)

Let \hat{U}_i as in the previous definition. Then, (i) all the level sets of $\hat{\phi}$ in \hat{U}_i are connected, (ii) $\partial \hat{U}_i$ has exactly two connected components $\hat{\gamma}_1$ and $\hat{\gamma}_2$ such that $\hat{\phi}(\hat{\gamma}_1) = \sup_{\hat{x} \in \hat{U}_i} \hat{\phi}(\hat{x})$ and $\hat{\phi}(\hat{\gamma}_2) = \inf_{\hat{x} \in \hat{U}_i} \hat{\phi}(\hat{x})$.

The previous Lemmas lead to η_i continuous such that

$$\int_{\hat{U}_i} (
abla \hat{\phi}) \hat{w}^2 = \int_{\hat{U}_i} (
abla \hat{\phi}) \eta_i^2(\hat{\phi}).$$

We define the function F_i by $F'_i = \eta_i^2$ and $F_i(0) = 0$, and we obtain

$$\int_{\hat{U}_i} (\nabla \hat{\phi}) \hat{w}^2 = \int_{\hat{U}_i} \nabla F_i(\hat{\phi}).$$

Due to the condition $q \cdot \nu = 0$ on $\partial \Omega$,

trajectories of q follow the boundary, and this led us to: γ_1 (resp. γ_2) is either a connected component of $\partial \hat{\Omega}$ or contains a critical point of $\hat{\phi}$.

Cases $N \ge 3$, incompressibile flows are measure preserving

$$\begin{cases} \frac{d}{ds}\Phi(s,x) = q(\Phi(s,x)), \\ \Phi(0,x) = \Phi_0(x) = x. \end{cases}$$

- *N* ≥ 3 allows incompressible flows to have more degrees of freedom and this leads to more randomness in the structure of their streamlines
- The above makes it complicated to study the level sets (surfaces) which are tangent to these trajectories.
- Since q is incompressible, the Jacobian $J(s, x) := \det [\nabla_x \Phi(s, x)]$ is equal to 1 (at any s and any $x \in \Omega$).
- Relevant work: "Relaxation enhancing flows" by Constantin-Novikov-Ryzhik-Zlatoš (Annals of Math. 2005)

Definition (Ergodic components of a vector field, $N \ge 3$)

Assume $N \ge 3$. A set $V \subseteq \Omega$ is called an ergodic component of the vector field q if V is Lebesgue measurable with $\mathcal{L}^N(V) > 0$, V is stable by the flow of q and

 $(W \subset V \text{ and } W \text{ stable by the flow of } q) \Rightarrow (\mathcal{L}^N(W) = 0 \text{ or } \mathcal{L}^N(V ackslash W) = 0$

An ergodic component in Ω produced by the advection q is, in a sense, *minimal*, up to a set of measure zero, in the family of sets which are *stable* by the flow associated to q.

Remark (N = 2)

An Incompressible field q will have no ergodic components in 2D.

M. El Smaily (AUB)

Propagation in a large flow

July 17, 2015 34 / 38

First integrals and ergodic components ($N \ge 3$) Lemma

Assume that $\Omega \subseteq \mathbb{R}^N$ is an open connected domain. Let w be a first integral of q on Ω and I a measurable subset of \mathbb{R} . Then, up to a set of measure 0, $w^{-1}(I)$ is stable by the flow of q. Furthermore,

$$orall t \in \mathbb{R}, \quad \mathcal{L}^{N}\left(\Phi_{t}(w^{-1}(I))\Delta\left(w^{-1}(I)
ight)
ight) = 0,$$

where Δ stands for the symmetric difference and Φ is the flow associated to q.

Theorem (El Smaily-Kirsch, 2014)

Let Ω be an open subset of \mathbb{R}^N (or more generally an N-dimensional manifold, like a flat torus). Let $q \in C^{1,\delta}(\overline{\Omega})$ be a divergence-free vector field, and w be a first integral of q. Then, w is constant a.e. on any ergodic component of the flow.

Existence of zero average flows with ergodic components

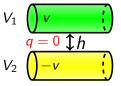


Figure: N = 3, two cylindrical ergodic components of q aligned in the same direction with a gap of height $h \ge 0$ in between.

Arnold-Beltrami-Childress flows (ABC flows)

- Results of Hu, Pesin and Talatiskaya (2004)
- (Katok 1979, Annals of Math)

confirm the existence of incompressible flows v which satisfy the assumptions of our theorem.

Criterion for linear speed-up (N = 3, 4)

Theorem (El Smaily-Kirsch, Arch. for Rational Mech. & Anal., 2014)

•
$$\Omega = \mathbb{R}^{N}$$
 or $\mathbb{R} \times \omega$ where $N \in \{3, 4\}$, $\omega \subseteq \mathbb{R}^{N-1}$
 $V_{1} := \mathbb{R} \times D_{1}$ and $V_{2} := \mathbb{R} \times D_{2}$ be subsets of Ω in the same direction $e = (1, 0, \dots, 0)$.

• Let q be a N-dimensional incompressible flow: $q|_{V_1} = v$, $q|_{V_2} = -v$, $q \equiv 0$ on $\mathbb{R}^N \setminus (\overline{V_1 \cup V_2})$, (q will have zero-average over C)

• if q admits two ergodic components V_1 and V_2 then

$$0 < \lim_{M \to +\infty} \frac{c^*_{\Omega,A,Mq,f}(e)}{M} < \infty \text{ if and only if } h := dist(\overline{V_1},\overline{V_2}) > 0.$$
 (5)

In particular, if the ergodic components, V_1 and V_2 are tangent to each other, we have $\lim_{M \to +\infty} \frac{c^*_{\Omega,A,Mq,f}(e)}{M} = 0.$

Open questions

Perspectives

- The large drift problem: full classification of "optimal incompressible flows" in dimension N = 3 (on going).
- Random media: via deterministic approaches (help from probability and stochastic analysis, works of Martin Hairer).

Thank you for your attention