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Abstract
In this paper we study a predator–prey system with free boundary in a
one-dimensional environment. The predator v is the invader which exists initially in a
sub-interval [0, s0] of [0, L] and has the Leslie–Gower terms that measure the loss in
the predator population due to rarity of the prey. The prey u (the native species) is
initially distributed over the whole region [0, L]. Our primary goal is to understand
how the success or failure of the predator’s invasion is affected by the initial datum v0.
We derive a spreading–vanishing dichotomy and give sharp criteria for spreading and
vanishing in this model.
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1 Introduction and statement of the main results
This paper is concerned with the existence and qualitative properties of solutions to a
predator–prey system of semilinear parabolic type over a bounded spatial domain subject
to free-boundary conditions. Inspired by former work (Chen and Shi [5] for instance) that
studies the nonlinear evolution of two species on an unbounded spatial domain, we focus
on the case where indigenous population undergoes diffusion and growth in a bounded
domain [0, L] to be more realistic. We discuss some of the prior work in Sect. 1.1 below.

In this work, we consider system (1) over a bounded domain [0, L] with Leslie–Gower
type nonlinearity. The nonlinear evolution equations that u and v satisfy are as follows:

⎧
⎨

⎩

∂u
∂t = uxx + u(1 – u) – v( u

u+m ) for t > 0 and 0 < x < L,
∂v
∂t = Dvxx + kv(1 – bv

u+a ) for t > 0 and 0 < x < s(t).
(1)

The above equations are subject to the following initial, boundary and free-boundary con-
ditions, for some μ > 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′(t) = –μvx(t, s(t)) for all t > 0,

s(0) = s0 for all x ∈ [0, s0],

v(t, s(t)) = 0 for all t > 0,

v(0, x) = v0(x) for x ∈ [0, s0], u(0, x) = u0(x) for all x ∈ [0, L],

ux(t, 0) = vx(t, 0) = 0, u(t, L) = 0,

(2)
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where all the parameters a, b, k, D, m and μ are positive.
Model (1), coupled with the conditions in (2), governs the dynamics of two species (u

and v) over a bounded spatial domain [0, L], where the function u (resp. v) stands for the
population of the prey (resp. predator). The condition v(t = 0, ·) ≡ v0(·) on [0, s0] conveys
that v initially occupies only a subregion [0, s0] ⊂ [0, L] of the whole domain.

The nonlinear term u
u+m in (1) is the Holling type-II functional response. This type of

nonlinearity is commonly used in the ecological literature. We refer the reader to [4] for
more details.

For species u who inhabit a finite region with a lethal exterior boundary point L (see the
conditions in (2), which are of Dirichlet boundary type). The evolution equation satisfied
by v, namely the second equation in (1), holds over an evolving domain (0, s(t)), however.
This brings a free-boundary nature to our problem. The first condition in (2), which is well-
known as the Stefan condition, states that the speed at which the free boundary expands
is proportional to the population-gradient at this location.

Now we comment on some parameters in model (1)–(2) before we briefly discuss some
prior work in Sect. 1.1. The domain size L is such that

L > max

{
π

2
√

D/k,
π

2

}

.

This choice of L is familiar: it appears as the critical domain size for the survival of a single
species obeying a reaction–diffusion equation on the domain [0, L] (see Sect. 3.2 in [4]).
We will see that this condition on L, together with additional conditions we derive later,
plays an essential role in the long-time asymptotic behaviors of the population densities u
and v.

Initial data. The initial data u0 and v0 are assumed to satisfy

⎧
⎪⎪⎨

⎪⎪⎩

u0(x) ∈ C2([0, L]), v0(x) ∈ C2([0, s0]),

u0(0) = v0(0) = v0(s0) = 0 for some 0 < s0 < L, u0(L) = 0,

u0(x) > 0 for x ∈ [0, L] and v0(x) ≥ 0 for all x ∈ [0, s0).

(3)

The parameters a, b and m. In the evolution equation satisfied by v in system (1), the pa-
rameter a represents the extent to which prey resources provide protection to predator v.
In all that follows, we assume that a, b and m satisfy the following hypothesis:

bm > 1 and a < bm – 1. (H)

Hypothesis (H) will be essential in proving our results about long-time asymptotic behav-
iors in Theorems 1.4 and 1.6.

1.1 Prior work
Much recent work [1–3, 11, 12, 19, 20, 23] studied predator–prey systems with the Leslie–
Gower scheme. We will discuss the most relevant issues to our present work.
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Chen and Shi [5] studied the following Holling–Tanner predator–prey model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1�u + αu – u2 – uv

u+ι
, t > 0, x ∈ Ω ,

∂v
∂t = d2�v + γ v(1 – εv

u ), t > 0, x ∈ Ω ,
∂u
∂ν

= ∂v
∂ν

= 0, t > 0, x ∈ ∂Ω ,

u(0, x) = u0(x) > 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω ,

(C.S.)

where u (resp. v) is the population of the prey (resp. predator). The term εv/u, known as the
Leslie–Gower term, measures the loss in predator v due to rarity of its favorite food u. The
parameter ε is the number of prey required to support one predator at equilibrium when
v equals u

ε
. The nonlinearity u

u+ι
in (C.S.) is the Holling type-II functional response. This

type of nonlinearity is commonly used in the ecological literature (see [4] for details). The
parameter ι is a positive constant measuring the extent to which the environment provides
protection to prey u. Chen and Shi [5] proved that the unique constant equilibrium of
system (C.S.) is globally asymptotically stable.

The problem which describes the dynamical process of a new competitor invading the
habitat of a native species originates from Du and Lin [9] who introduced the following
free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = d1�u + u(m – b1u – c1υ), 0 < r < h(t),
∂υ
∂t = d2�υ + υ(a2 – b2u – c2υ), 0 < r < +∞,

h′(t) = –μur(t, h(t)), t > 0,

ur(t, 0) = υr(t, 0) = 0, u(t, r) = 0, t > 0, h(t) ≤ r < +∞,

u(0, r) = u0(r), r ∈ [g(t), h(t)], t = 0,

u(0, r) = u0(r), h(0) = h0, 0 ≤ r ≤ h0,

υ(0, r) = υ0(r), 0 ≤ r < +∞.

(DL)

Du and Lin [9] considered two cases: (1) u is the superior competitor and υ is the inferior
competitor or (2) υ is the superior competitor and u is the inferior competitor. When u is
the superior competitor, [9] proves that a spreading–vanishing dichotomy holds. Namely,
as t → +∞, either h(t) → ∞ and (u,υ) → (u∗, 0), or h∞ < ∞ and (u,υ) → (0,υ∗).

For more similar nonlinear free-boundary problems, we refer the reader to [14–17, 21,
22, 24, 25] and the references cited therein.

In the rest of this section, we state our main results. Section 1.2 shows the existence and
uniqueness of solutions to the model (1) subject to conditions (2). Section 1.4 gives the
criteria on the parameters of the system in order to have specific asymptotic behaviors as
t → ∞.

The results of Sect. 1.4 address specifically the question of whether the species vanish
or spread throughout the domain [0, L] after a large enough time.

1.2 Global existence of smooth solutions
Theorem 1.1 Assume that (u0, v0) satisfies (3). Then, for any θ ∈ (0, 1), there is T > 0 such
that the problem (1)–(2) admits a unique solution (u(t, x), v(t, x), s(t)) for t ∈ [0, T]. More-
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over,

(u, v, s) ∈ C
(1+θ )

2 ,1+θ (Qu) × C
(1+θ )

2 ,1+θ (Qv) × C1+ θ
2
(
[0, T]

)
,

where

Qu =
{

(t, x) ∈R
2 : t ∈ [0, T] and x ∈ [0, L]

}

and

Qv =
{

(t, x) ∈R
2 : t ∈ [0, T] and x ∈ [

0, s(t)
]}

.

The following lemma is essential in proving the existence of a global-in-time solution to
the free-boundary problem (1)–(2).

Lemma 1.1 (Towards global solutions in time) Let (u, v, s(t)) be a solution of (1)–(2) for
t ∈ [0, T] for some T > 0. Then:

(i) 0 < u(t, x) ≤ max{1,‖u0‖∞} := M1 for all t ∈ [0, T] and x ∈ [0, L);
(ii) 0 < v(t, x) ≤ max{M1 + a,‖v0‖∞} := M2 for all t ∈ [0, T] and x ∈ [0, s(t));

(iii) 0 < s′(t) ≤ Λ for all t ∈ (0, T],
where Λ > 0 is a constant depending on μ, D, k, ‖u0‖∞, ‖v0‖∞, ‖u′

0‖C[0,s0] and ‖v′
0‖C[0,s0].

From Theorem 1.1 and Lemma 1.1, we get the following global existence result.

Theorem 1.2 Assume that (u0, v0) satisfies the condition (3), then, for any θ ∈ (0, 1), the
free-boundary problem (1)–(2) admits a unique solution

(
u(t, x), v(t, x), s(t)

)

which satisfies

(u, v, s) ∈ C
(1+θ )

2 ,1+θ (Qu) × C
(1+θ )

2 ,1+θ (Qv) × C1+ θ
2
(
[0, +∞)

)
,

where

Qu =
{

(t, x) ∈R
2 : t ∈ [0, +∞) and x ∈ [0, L]

}

and

Qv =
{

(t, x) ∈R
2 : t ∈ [0, +∞) and x ∈ [

0, s(t)
]}

.

1.3 Preliminaries
We start with a remark regarding the asymptotics of the free boundary s(t):

Remark 1.1 As we will see, Lemma 1.1 and Theorem 1.2 yield s′(t) > 0 for all t > 0. This
allows us to define the limit s∞ as follows:

s∞ := lim
t→+∞ s(t) in [0, +∞) ∪ {+∞}. (4)
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Then we may have three different cases according to the relation between s∞ and L:

(i) s∞ < L, (ii) s∞ = L or (iii) s∞ > L.

Since L is finite, if s∞ > L, there exists 0 < T∗ < ∞ such that s(T∗) = L. In such a case,
the prey v exists in the whole region [0, L] and the free-boundary problem (1) changes to
the following fixed-boundary problem which holds over the whole interval (0, L) (when
t > T∗):

⎧
⎨

⎩

∂u
∂t = uxx + u(1 – u) – v u

u+m for t > T∗ and 0 < x < L,
∂v
∂t = Dvxx + kv(1 – bv

u+a ) for t > T∗ and 0 < x < L,
(5)

with the conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ux(t, 0) = vx(t, 0) = 0, t > T∗,

u(t, L) = v(t, L) = 0, t > T∗,

u(T∗, x) = uT∗ (x), x ∈ [0, L],

v(T∗, x) = vT∗ (x), x ∈ [0, L].

(6)

The following theorem demonstrates rather strikingly that s∞ �= L. This rules out the
possibility (ii), above.

Theorem 1.3 Let s∞ be as defined in (4) and L > max{π
2

√
D/k, π

2 }. Then we have a di-
chotomy for the relation between s∞ and L. Namely, either s∞ < L or s∞ > L.

1.4 Spreading and vanishing
The following statement is a comparison principle related to the free-boundary prob-
lem (1)–(2). This comparison principle will help derive criteria for the spread or extinc-
tion/vanishing (as t → +∞) of the solutions to our system (1)–(2).

Lemma 1.2 (Comparison principle) Let (u, v, s) be a classical solution to the free-boundary
problem (1)–(2) with initial data (u0, v0) and denote

M1 := max
{

1,‖u0‖∞
}

.

(a) Assume that (ω, δ(t)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ωt – Dωxx ≥ kω(1 – bω
M1+a ) for t > 0 and 0 < x < δ(t),

ωx(t, 0) ≤ 0, ω(t, δ(t)) = 0,

δ′(t) ≥ –μωx(t, δ(t)).

(7)

If ω(0, x) ≥ v0(x) in [0, L] and δ(0) ≥ s(0), then
• δ(t) ≥ s(t) for all t ≥ 0,
• ω(t, x) ≥ v(t, x) for all x ∈ [0, s(t)].
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(b) Assume that (ν,σ (t)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

νt – Dνxx ≤ kν(1 – bν
a ) for t > 0 and 0 < x < σ (t),

νx(t, 0) ≥ 0, ν(t,σ (t)) = 0,

σ ′(t) ≤ –μνx(t,σ (t)).

(8)

If ν(0, x) ≤ v0(x) in [0, L] and σ (0) ≤ s(0), then
• σ (t) ≤ s(t) for all t ≥ 0,
• ν(t, x) ≤ v(t, x) for all x ∈ [0,σ (t)].

Theorem 1.4 (Spreading) Suppose that (u, v, s) is the solution of (1) subject to the condi-
tions in (2). If s∞ > L, then we have

lim sup
t→+∞

u(t, x) ≤ ū(x); lim inf
t→+∞ u(t, x) ≥ u(x);

and

lim sup
t→+∞

v(t, x) ≤ v̄(x); lim inf
t→+∞ v(t, x) ≥ v(x).

Here ū(x), u(x), v̄(x), v(x) are determined in Lemma 2.1.

Theorem 1.5 (Vanishing) Suppose that (u, v, s(t)) is a solution of (1)–(2). If s∞ < L, then
we have

lim inf
t→+∞ u(t, ·) ≥ ū(x) for x ∈ [0, L] and lim

t→+∞
∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

Here ū(x) be determined in Lemma 2.1.

Definition 1.1 (The notion of ‘vanishing’ and ‘spreading’) Based on the results of Theo-
rems 1.4 and 1.5, we say that the species v spreads successfully if s∞ > L. In such a case, we
have

lim sup
t→+∞

u(t, x) ≤ ū(x); lim inf
t→+∞ u(t, x) ≥ u(x);

and

lim sup
t→+∞

v(t, x) ≤ v̄(x); lim inf
t→+∞ v(t, x) ≥ v(x).

We say that the species v vanishes eventually if s∞ < L. In such case we have

lim inf
t→+∞ u(t, ·) ≥ ū(x) for x ∈ [0, L] and lim

t→+∞
∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

1.5 Criteria for spreading and vanishing
In this subsection, we find conditions on the parameters D, k, L, μ and s(0) := s0 which
determine whether the components of a solution (u, v, s) to the free-boundary problem
(1), subject to the conditions (2), will spread or vanish as t → +∞.
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Lemma 1.3 If s∞ < L, then s∞ ≤ π
2

√
D
k . Furthermore, if s0 ≥ π

2

√
D
k then s∞ > L.

Theorem 1.6 Suppose that s(0) := s0 < π
2

√
D
k in the free-boundary problem (1)–(2). Then:

1. If
∫ s0

0 v0(x) dx ≥ max{1, b‖v0‖∞
a } × D

μ
× ( π

2

√
D
k – s0), the species v spreads successfully.

2. Let δ = 1
2 (

π
2

√
D/k

s0
– 1) > 0 and β = π2

8
D

(1+δ)2s2
0

– k
2 > 0. If

‖v0‖∞ ≤ cos

(
π

2 + δ

)
δs2

0β(2 + δ)
2πμ

,

then the species v vanishes eventually.

2 Proofs
2.1 Proofs of the results on global existence and the comparison principle
In this section, we first prove the local and global existence results of solution for the free-
boundary problem (1). We also derive a comparison principle which will be used several
times in our proofs.

Proof of Theorem 1.1 We will use the contraction mapping principle on some functional
spaces arranged after rewriting the problem in a domain without a free boundary. We
follow the same steps, leading to local existence, as in [10]. But we have to pay attention
to the facts that our model is different from the one in [10] (especially the nonlinearities)
and the spatial domain in our work is bounded.

We first straighten the free boundary and transform it to a “fixed” boundary through a
common change of variables (appeared first in [6] in the case where the spatial domain is
the whole real line): let η ∈ C3([0,∞)) such that

for all y,
∣
∣η′(y)

∣
∣ ≤ 2

σ
,

η(y) = 1 if |y – s0| ≤ σ

4
,

η(y) = 0 if |y – s0| > σ ,

where we have chosen σ = 1
2 min{L – s0, s0}. We then define

x = y + η(y)
(
s(t) – s0

)
, 0 ≤ y ≤ L. (9)

If |s(t) – s0| ≤ σ /4, the transformation (x, t) −→ (y, t) is a diffeomorphism from [0, L] to
[0, L]: indeed fixing t so that |s(t) – s0| ≤ σ /4, we see that the transformation x → y is
bijective since

∂x
∂y

= 1 +
(
s(t) – s0

)
η′(y) ≥ 1 –

∣
∣s(t) – s0

∣
∣
∣
∣η′(y)

∣
∣ ≥ 1/2 > 0.

Moreover,

(
0 ≤ x ≤ s(t)

) ⇐⇒ (0 ≤ y ≤ s0) and
(
x = s(t)

) ⇐⇒ (y = s0). (10)
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Now we compute

∂y
∂x

=
1

1 + η′(y)(s(t) – s0)
:= Q1

(
s(t), y(t)

)
,

∂2y
∂x2 =

–η′′(y)(s(t) – s0)
[1 + η′(y)(s(t) – s0)]3 := Q2

(
s(t), y(t)

)
, and

∂y
∂t

=
–s′(t)η(y)

1 + η′(y)(s(t) – s0)
:= Q3

(
s(t), y(t)

)
.

To simplify the presentation in the following steps, we denote

U(t, y) = u(t, x), V (t, y) = v(t, x),

F(U , V ) = U(1 – U) – V
U

U + m
and G(U , V ) = kV

(

1 –
bV

U + a

)

.

Then problem (1) is transformed to the following ‘fixed-boundary’ problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t = Q2

1Uyy + (Q2 – Q3)Uy + F(U , V ), t > 0 and 0 < y < L,
∂V
∂t = DQ2

1Vyy + (DQ2 – Q3)Vy + G(U , V ), t > 0 and 0 < y < s0,

Uy(t, 0) = U(t, L) = 0, t > 0,

Vy(t, 0) = V (t, s0) = 0, t > 0,

s′(t) = –μUy(t, s0), t > 0,

V (0, y) = V0(y), y ∈ [0, s0],

U(0, y) = U0(y), y ∈ [0, L].

(11)

As mentioned above, we will use the contraction mapping principle in order to prove
the local existence of a solution. We let s̃ = –μU ′

0(s0) and choose T such that 0 < T ≤
σ /4(1 + s̃). We define the following functional spaces in terms of T :

X1T :=
{

U ∈ C(Qu) : U(0, y) = U0(y) and ‖U – U0‖C(Qu) ≤ 1
}

,

X2T :=
{

V ∈ C(Qv) : V (0, y) = V0(y) and ‖V – V0‖C(Qv) ≤ 1
}

,

X3T :=
{

s ∈ C1[0, T],
∥
∥s′ – s̃

∥
∥

C[0,T] ≤ 1
}

,

(12)

where Qv = {(t, y) : 0 ≤ t ≤ T and 0 < y < s0}. Then the space XT = X1T × X2T × X3T is a
complete metric with the metric

d
(
(U1, V1, s1), (U2, V2, s2)

)
= ‖U1 – U2‖C(Qu) + ‖V1 – V2‖C(Qv) +

∥
∥s′

1 – s′
2
∥
∥

C[0,T].

We then have

∣
∣s(t) – s0

∣
∣ ≤

∫ T

0

∣
∣s′(τ )

∣
∣dτ ≤ T(1 + s̃) ≤ σ

4
,

and this guarantees that the mapping (t, x) → (t, y) is diffeomorphism.
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By standard Lp theory and the Sobolev imbedding theorem, for any (U , V , s(t)) ∈ XT and
for any θ ∈ (0, 1), the following initial-boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Û
∂t = Q2

1Ûyy + (Q2 – Q3)Ûy + F(U , V ), t > 0 and 0 < y < L,
∂V̂
∂t = DQ2

1V̂yy + (DQ2 – Q3)V̂y + G(U , V ), t > 0 and 0 < y < s0,

Ûy(t, 0) = Û(t, L) = 0,

V̂y(t, 0) = V̂ (t, s0) = 0,

V̂ (0, y) = V0(y), y ∈ [0, s0],

Û(0, y) = U0(y), y ∈ [0, L],

(13)

admits a unique bounded solution (Û , V̂ ) ∈ C
(1+θ )

2 ,1+θ (Qu) × C
(1+θ )

2 ,1+θ (Qv) such that

‖Û‖
C

(1+θ )
2 ,1+θ (Qu)

≤ C1 and ‖V̂‖
C

(1+θ )
2 ,1+θ (Qv)

≤ C2,

where C1 and C2 depend on s0, θ , ‖U0‖C2[0,s0] and ‖V0‖C2[0,s0].
Next, we define

ŝ(t) = s0 – μ

∫ t

0
Ûy(τ , s0) dτ .

Then ŝ′(t) = –μÛy(t, s0) ∈ C θ
2 [0, T] and ‖ŝ′‖

C
θ
2

≤ C3, where C3 depends on μ, h0, θ ,
‖U0‖C2[0,s0] and ‖V0‖C2[0,s0].

We are now ready to consider the mapping, defined on XT by

Φ :
(
U , V , s(t)

) �→ (
Û , V̂ , ŝ(t)

)
,

in order to seek a fixed point. We first confirm that, for T small enough, Φ maps XT into
itself: indeed, if we take T such that

0 < T ≤ min
{

C
–2

1+θ
1 , C

–2
1+θ

2 , C
–2
θ

3
}

,

we then have

‖Û – U0‖C(Qu) ≤ ‖Û‖
C0, 1+θ

2 (Qu)
T

1+θ
2 ≤ C1T

1+θ
2 ≤ 1,

‖V̂ – V0‖C(Qv) ≤ ‖V̂‖
C0, 1+θ

2 (Qv)
T

1+θ
2 ≤ C2T

1+θ
2 ≤ 1,

and

∥
∥ŝ′ – s̃

∥
∥

C[0,T] ≤ ∥
∥ŝ′∥∥

C
θ
2 [0,T]

T
θ
2 ≤ C3T

θ
2 ≤ 1.

In other words, Φ maps XT into XT . Let us now verify that Φ is a contraction for suffi-
ciently small T . Let (Ûi, V̂i, ŝi) ∈ XT for i = 1, 2. Setting Ū = Û1 – Û2, and V̄ = V̂1 – V̂2, then
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we have

∂Ū
∂t

= Q2
1
(
s2(t), y(t)

)
Ūyy +

[
Q2

(
s2(t), y(t)

)
– Q3

(
s2(t), y(t)

)]
Ūy + F1,

for t > 0 and 0 < y < L,

and

∂V̄
∂t

= DQ2
1
(
s2(t), y(t)

)
V̄yy +

(
DQ2

(
s2(t), y(t)

)
– Q3

(
s2(t), y(t)

))
V̄y + F2,

for t > 0 and 0 < y < s0,

together with the initial-boundary conditions

Ū(t, 0) = Ū(t, L) = 0, t > 0,

V̄ (t, 0) = V̄ (t, s0) = 0, t > 0,

Ū(0, y) = 0, 0 ≤ y ≤ L,

V̄ (0, y) = 0, 0 ≤ y ≤ s0,

where

F1 =
[
Q2

1
(
s1(t), y(t)

)
– Q2

1
(
s2(t), y(t)

)]
∂yyÛ1

+
[
Q2

(
s1(t), y(t)

)
– Q2

(
s2(t), y(t)

)]
∂yÛ1

–
[
Q3

(
s1(t), y(t)

)
– Q3

(
s2(t), y(t)

)]
∂yÛ1

+ F(U1, V1) – F(U2, V2)

and

F2 =
[
DQ2

1
(
s1(t), y(t)

)
– DQ2

1
(
s2(t), y(t)

)]
∂yyV̂1

+
[
DQ2

(
s1(t), y(t)

)
– DQ2

(
s2(t), y(t)

)]
∂yV̂1

–
[
Q3

(
s1(t), y(t)

)
– Q3

(
s2(t), y(t)

)]
∂yV̂1

+ G(U1, V1) – G(U2, V2).

Using standard Lp estimates and the Sobolev embedding theorem we then get

‖Ū‖
C

1+θ
2 ,1+θ (Qu)

≤ C4
(‖U1 – U2‖C(Qu) + ‖V1 – V2‖C(Qv) + ‖s1 – s2‖C1[0,T]

)
,

‖V̄‖
C

1+θ
2 ,1+θ

(Qv) ≤ C5
(‖U1 – U2‖C(Qu) + ‖V1 – V2‖C(Qv) + ‖s1 – s2‖C1[0,T]

)
, and

∥
∥s̄′

1 – s̄′
2
∥
∥

C
1+θ

2 ,1+θ ([0,T])
≤ C6

(‖U1 – U2‖C(Qu) + ‖V1 – V2‖C(Qv) + ‖s1 – s2‖C1[0,T]
)
,
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where C4, C5, C6 > 0 depend on Qi and Ci for i = 1, 2, 3. Furthermore,

‖Ū‖C(Qu) + ‖V̄‖C(Qv) +
∥
∥s̄′

1 – s̄′
2
∥
∥

C[0,T]

≤ T
1+θ

2 ‖Ū‖
C

1+θ
2 ,1+θ (Qu)

+ T
1+θ

2 ‖V̄‖
C

1+θ
2 ,1+θ (Qv)

+ T
θ
2
∥
∥s̄′

1 – s̄′
2
∥
∥

C
1+θ

2 ,1+θ ([0,T])
.

From the above estimates we can conclude that, if T ∈ (0, 1], then

‖Ū‖C(Qu) + ‖V̄‖C(Qv) +
∥
∥s̄′

1 – s̄′
2
∥
∥

C([0,T])

≤ C7T
θ
2
(‖U‖C(Qu) + ‖V‖C(Qv) +

∥
∥s′

1 – s′
2
∥
∥

C([0,T])

)
,

where C7 := max{C4, C5, C6}. Thus, choosing

T =
1
2

min

{

1,
L – s0

8(1 + h̃)
, C

–2
1+θ

1 , C
–2

1+θ
2 , C

–2
θ

3 , C
–2
θ

7

}

,

we see that Φ is a contraction mapping on the set XT . Therefore, Φ admits a unique fixed
point in XT and this completes the proof of short-time existence of a solution to (1). �

As mentioned in Sect. 1 above, Lemma 1.1 is the main key leading to global existence in
time. We will prove this lemma and then turn to the proof of the global existence theorem.

Proof of Lemma 1.1 Consider the following initial value problem:

ū′(t) = ū(1 – ū) for t > 0, ū(0) = ‖u0‖∞ := sup
x∈[0,L]

u0(x). (14)

The comparison principle applied to the function u – ū, shows that

u(t, x) ≤ ū(t) ≤ max
{

1,‖u0‖∞
}

:= M1,

for all t ∈ [0, T] and x ∈ [0, L]. Similarly, considering the initial value problem

v̄′(t) = kv̄
(

1 –
v̄

M1 + a

)

for t > 0, v̄(0) = ‖v0‖∞ := sup
x∈[0,L]

v0(x), (15)

the comparison principle again shows that

v(t, x) ≤ v̄(t) ≤ max
{

M1 + a,‖v0‖∞
}

for all t ∈ [0, T] and x ∈ [0, s(t)]. Moreover, the strong maximum principle shows that
u(t, x) > 0 for all (t, x) ∈ [0, T] × [0, L) and v > 0 for t ∈ [0, T] and x ∈ [0, s(t)). Since
v(t, s(t)) = 0, the Hopf lemma implies that vx(t, s(t)) < 0 for all t ∈ (0, T]. It then follows
from the free-boundary condition in (2) that s′(t) > 0 for t ∈ (0, T].
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Now we turn to prove our claim that s′(t) ≤ Λ in (0, T]. To this end, we compare v to the
auxiliary function ω defined by

ω(t, x) = M2
[
2M

(
s(t) – x

)
– M2(s(t) – x

)2]

for t ∈ [0, T] and x ∈ [s(t) – M–1, s(t)], where we have chosen (reasons for this choice will
become clear in the next steps)

M = max

{
1
s0

,
√

2
2

,
√

κ

2D
,
‖u′‖C[0,s0]

M1
,
‖v′‖C[0,s0]

M2

}

. (16)

We have

⎧
⎪⎪⎨

⎪⎪⎩

ωt – Dωxx ≥ 2DM2M2 ≥ kv ≥ kv(1 – v
u+a ) = vt – Dvxx,

ω(t, s(t)) = 0 = v(t, s(t)),

ω(t, s(t) – M–1) = M2 ≥ v(t, s(t) – M–1).

(17)

We note that the choice made for M in (16) leads to ω(0, x) ≥ v0(x): for a fixed x ∈ [s0 –
M–1, s0], we have

v0(x) = –
∫ s0

x
v′

0(s) ds ≤ (s0 – x)
∥
∥v′

0
∥
∥

C[0,s0],

and

ω(0, x) = M2M(s0 – x)
[
2 – M(s0 – x)

] ≥ M2M(s0 – x).

Thus, if M satisfies (16), we get ω(0, x) ≥ v(0, x) for all x in [s0 – M–1, s0]. From (17), the
comparison principle shows that ω(t, x) ≥ v(t, x) for all t ∈ [0, T] and x ∈ [s(t) – M–1, s(t)].
Since ω(t, s(t)) = 0 = v(t, s(t)), we obtain

∂xv
(
t, s(t)

) ≥ ∂xω
(
t, s(t)

)
= –2MM2.

This, together with the free-boundary condition in (2), implies that s′(t) ≤ Λ where Λ :=
2μMM2. The proof of Lemma 1.1 is now complete. �

Having Lemma 1.1 in hand, we are now ready to prove the global existence result stated
in Theorem 1.2.

Proof of Theorem 1.2 In view of Theorem 1.1, we let Tmax be the maximal existence time of
the solution. Now we need to show Tmax = +∞. Suppose to the contrary that Tmax < +∞.
By Lemma 1.1, there exists a positive constant M, independent of Tmax, such that, for all
t ∈ [0, Tmax) and x ∈ [0, L], we have

0 ≤ u(t, x), v(t, x), s′(t) ≤ M,

and v(t, x) = 0 when x ∈ [s(t), L].
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Fix ε ∈ (0, Tmax) and T ′ > Tmax. By standard regularity theory, there exists M′ which
depends only on ε, T ′ and M, such that

max
{∥
∥u(t, ·)∥∥C2[0,L],

∥
∥v(t, ·)∥∥C2[0,L]

} ≤ M′,

for all t ∈ [ε, Tmax). Following the same steps in the proof of Theorem 1.1, we can find δ > 0,
which depends only on M′ and M, such that the solution of (1) with the initial time Tmax – δ

2
can be uniquely extended to the time Tmax + δ

2 . This, however, contradicts the maximality
of Tmax. Eventually, we have Tmax = +∞ and the proof of Theorem 1.2 is complete. �

In order to prove Theorem 1.3, we need the following lemmas.

Lemma 2.1 (s∞ = L) Suppose that (u, v, s) is the solution of (1) subject to the conditions in
(2). If s∞ = L, then we have

lim sup
t→+∞

u(t, x) ≤ ū(x); lim inf
t→+∞ u(t, x) ≥ u(x);

and

lim sup
t→+∞

v(t, x) ≤ v̄(x); lim inf
t→+∞ v(t, x) ≥ v(x).

Here ū(x), u(x), v̄(x), v(x) are determined in the following proof.

Proof The proof mainly uses the upper and lower solution method. Suppose s∞ = L. We
start by letting ū(t, x) satisfy

⎧
⎪⎪⎨

⎪⎪⎩

ūt – ūxx = ū(1 – ū), for all t > 0 and 0 < x < L,

ūx(t, 0) = 0, ū(t, L) = 0, t > 0,

ū(0, x) = u0(x), 0 < x < L.

(18)

By the comparison principle, we know u(t, x) ≤ ū(t, x) for t ≥ 0 and 0 ≤ x ≤ L. Since L > π
2 ,

appealing to Proposition 3.2 and Proposition 3.3 of [10] we obtain limt→+∞ ū(t, x) = ū(x)
uniformly in x ∈ [0, L], where ū(x) > 0 satisfies

⎧
⎨

⎩

–ūxx = ū(1 – ū), 0 < x < L,

ūx(0) = 0, ū(L) = 0, t > 0.
(19)

Hence,

lim sup
t→+∞

u(t, x) ≤ ū(x) uniformly in x ∈ [0, L].

Since s∞ = L, for any ε > 0, there exists T1 > 0 such that u(t, x) < ū(x) + ε for all 0 < x < L
when t > T1. Thus we consider v̄ε which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

v̄εt – Dv̄εxx = kv̄ε(1 – bv̄ε

ū(x)+a+ε
) for all t > T1 and 0 < x < L,

v̄εx(t, 0) = 0, v̄ε(t, L) = 0, t > T1,

v̄ε(T1, x) = v(T1, x), x ∈ [0, L].

(20)
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From the comparison principle, we know that v(t, x) ≤ v̄ε(t, x) for t ≥ 0 and 0 ≤
x ≤ L.

As above, L > π
2

√
D
k shows that limt→+∞ v̄ε(t, x) = v̄ε(x), where v̄ε(x) satisfies

⎧
⎨

⎩

–Dv̄εxx = kv̄ε(1 – bv̄ε

ū(x)+a+ε
), 0 < x < L,

v̄εx(0) = 0 = v̄ε(L) = 0.
(21)

As ε is arbitrary, it then follows that

lim sup
t→+∞

v(t, x) ≤ v̄(x) uniformly in any compact subset of [0, L).

Here v̄(x) satisfies

⎧
⎨

⎩

–Dv̄xx = kv̄(1 – bv̄
ū(x)+a ), 0 < x < L,

v̄x(0) = 0 = v̄(L) = 0.
(22)

Now, we note that there exists T2 > T1 such that v(t, x) < v̄(x) + ε when t > T2, 0 < x < L.
Similarly, we consider the following problem for u(t, x):

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx = u(1 – u – v̄(x)+ε

m ) for all t > T2 and 0 < x < L,

ux(t, 0) = 0, u(t, L) = 0, t > T2,

u(T2, x) = u(T2, x), x ∈ [0, L].

(23)

Again, because of the comparison principle, we obtain u(t, x) ≥ u(t, x) for t ≥ 0 and 0 ≤
x ≤ L.

Since L > π
2 , limt→+∞ u(t, x) = u(x)uniformlyin[0, L]. Here u(x) satisfies

⎧
⎨

⎩

–uxx = u(1 – u – v̄(x)+ε

m ), 0 < x < L,

ux(0) = 0, u(L) = 0, t > T2.
(24)

Consequently, lim inft→+∞ u(t, x) ≥ u(x) uniformly in [0, L]. We mention that the positivity
of u(x) follows from the assumption (H).

Furthermore, for any fixed l > 0, there exists T3 > T2 such that s(T3) > max{l, π
2

√
D
k } when

t > T3 and u(t, x) > u(x) – ε when t > T3 and 0 < x < L. Then we let v(t, x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

vt – Dvxx = kv(1 – bv
u(x)+a–ε

) for all t > T3 and 0 < x < s(T3),

vx(t, 0) = 0, v(t, s(T3)) = 0, t > T3,

v(T3, x) = v(T3, x), x ∈ [0, s(T3)].

(25)

Thus, we obtain v(t, x) ≥ v(t, x) for t ≥ 0 and 0 ≤ x ≤ l. limt→+∞ v(t, x) = v(x) uniformly in
x ∈ [0, l].

⎧
⎨

⎩

–Dvxx = kv(1 – bv
u(x)+a–ε

), 0 < x < s(T3),

vx(0) = 0, v(s(T3)) = 0, t > T3.
(26)
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Hence, the arbitrariness of l implies that

lim inf
t→+∞ v(t, x) ≥ v(x) uniformly in any compact subset of [0, L). �

Proof of Theorem 1.3 By the proof of Theorem 1.1, we can easily get the following esti-
mates:

‖u‖C1+θ ,(1+θ )/2(Gu) + ‖v‖C1+θ ,(1+θ )/2(Gv) +
∥
∥h(t)

∥
∥

C1+θ/2([0,∞)) ≤ C, (27)

where C depends on s∞, on the initial data (u0, v0) and s0 and on θ ∈ (0, 1). We have de-
noted by

Gu =
{

(t, x) ∈ [0,∞) × [0, L]
}

and Gv =
{

(t, x) ∈ [0,∞) × [
0, s(t)

]}
.

From Lemma 2.1, we have

lim inf
t→+∞ v(t, x) ≥ v(x) > 0.

Then a sequence (tk , xk) ∈ (0,∞) × [0, s(t)] with tk → ∞ as k → ∞ exists such that
v(tk , xk) ≥ v(x)/2 for all k = 1, 2, 3, . . . . Hence xk < s(tk) and so 0 ≤ xk < s(tk) < s∞ = L. Thus,
up to subsequence we have xk → x0 ∈ (0, s∞) as k → ∞.

Define

uk(t, x) := u(t + tk , x) and vk(t, x) := v(t + tk , x),

for t ∈ (–tk ,∞) and x ∈ [0, s(t + tk)]. From (27) and standard parabolic regularity, it follows
that {(uk , vk)} has a subsequence {(uki ,υki )} such that (uki , vki ) → (ǔ, v̌) as ki → ∞, where
(ǔ, v̌) satisfies

⎧
⎨

⎩

∂ǔ
∂t = ǔxx + ǔ(1 – ǔ) – v̌ ǔ

ǔ+m for (t, x) ∈ (–∞, +∞) × (0, L),
∂ v̌
∂t = Dv̌xx + v̌(k – bv̌

ǔ+a ) for (t, x) ∈ (–∞, +∞) × (0, L),
(28)

together with v̌(t, s∞) = 0 for all t ∈ (–∞, +∞).
We note that v̌(0, x0) = limki→∞ v(tki , xtki

) ≥ v(x)/2. It follows from the maximum princi-
ple that v̌ > 0 in (–∞, +∞) × (0, L). Thus, we can apply the Hopf lemma at the point (0, L)
and conclude that

v̌x(0, L) < 0.

As a consequence, one can find a uniform constant κ > 0 such that

∂xv
(
tki , s(tki )

)
= ∂xvki

(
0, s(tki )

)
< –κ < 0, for i large enough.

The latter, together with the Stefan condition s′(·) = –μvx(·, s(·)), implies that s′(tki ) > μκ ,
for i large enough. On the other hand, our assumption that s∞ = L leads to s′(t) → 0 as
t → ∞ (see Lemma 3.3 of [10]) and this contradicts with s′(tki ) > μκ (for large enough i).
So this shows that s∞ �= L. �
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2.2 Long-time asymptotics: proofs of the vanishing and spreading criteria
The first result we prove in this subsection is Lemma 1.2, which is a comparison principle
for system (1)–(2).

Proof of Lemma 1.2 We will prove (a) only, as the proof of (b) is similar.
Step 1: We consider the case δ(0) > s(0). In such case, we have δ(t) > s(t) for small t

and we are left to prove δ(t) > s(t) for all t ≥ 0. Suppose this is not true, then there exists
T > 0 such that δ(T) = s(T) and, for such T , we have δ′(T) ≤ s′(T). Since ω(0, x) ≥ v0(x),
by the maximum principle applied to v – w, with the second equation of (1) in hand, we
get ω > v for all (t, x) ∈ [0, T] × (0, s(t)). By the Hopf lemma, as ω(T , s(T)) = v(T , s(T)), we
see that ωx(T , s(T)) < vx(T , s(T)). Appealing now to the free-boundary condition, (s′(t) =
–μvx(t, s(t)) for all t > 0) in (2), we obtain

δ′(T) ≥ –μωx
(
T , δ(T)

)
> –μvx

(
T , s(T)

)
= s′(T),

which contradicts with δ′(T) ≤ s′(T). Thus, δ(t) > s(t) for all t ≥ 0. Using the comparison
principle between (0,ω) and (u, v) where x ∈ [0, s(t)] ⊂ [0, δ(t)], we obtain ω ≥ v for all
x ∈ [0, s(t)] and t ≥ 0.

Step 2: In the general case, we have δ(0) ≥ s(0). We construct the parametric functions
(vε , sε), for ε > 0, such that

s′
ε(t) = –μ(1 – ε)∂xvε

(
t, sε(t)

)

with suitable initial data (vε(0, x), sε(0)) such that δ(0) > sε(0). Using the result of Step 1,
followed by passing to the limit ε → 0, we obtain the desired inequalities. �

Now we turn to the

Proof of Theorem 1.4 Since s∞ > L and L > max{π
2

√
D
k , π

2 }, there exists T∗ such that

s(T∗) = L > max{π
2

√
D
k , π

2 } when t = T∗ and the system (1) becomes (5) with the conditions
(6). In such case we are studying a fixed-boundary problem. With minor modifications,
the proof can be done by following the same lines as in the proof of Lemma 2.1 above.
This completes the proof of Theorem 1.4. �

Proof of Theorem 1.5 Suppose to the contrary that

lim sup
t→+∞

v(t, ·)C[0,s(t)] = δ > 0.

Then combining with (27), a sequence (tk , xk) ∈ (0,∞) × [0, s(t)] with tk → ∞ as k → ∞
exists such that v(tk , xk) ≥ δ/2 for all k = 1, 2, 3, . . . . Hence xk < s(tk) and so 0 ≤ xk < s(tk) <
s∞ < L. Thus, up to subsequence (if necessary) we have xk → x0 ∈ (0, s∞) as k → ∞.

From the Proof of Theorem 1.3, we know that v̌x(0, s∞) < 0. As a consequence, one can
find a uniform constant κ1 > 0 such that

∂xv
(
tki , s(tki )

)
= ∂xvki

(
0, s(tki )

)
< –κ1 < 0, for i large enough.
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The latter, together with the Stefan condition s′(·) = –μvx(·, s(·)), implies that s′(tki ) > μκ1

for i large enough. On the other hand, our assumption that s∞ < L leads to s′(t) → 0 as
t → ∞ and thus a contradiction with s′(tki ) > μκ1 (for large enough i). Therefore,

lim
t→+∞

∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

Now we prove that lim inft→+∞ u(t, ·) ≥ ω(x) for x ∈ [0, L]. Since limt→+∞ ‖υ(t, ·)‖C[0,s(t)] =
0, for any ε ∈ (0, 1), there exists T > 0 such that 0 ≤ υ(t, x) ≤ ε for t > T and for all x ∈ [0, L].
We then get

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx ≥ u(1 – u – ε
m ) for all t ≥ T and x ∈ [0, L],

ux(t, 0) = u(t, L) = 0, t ≥ T ,

u(T , x) > 0.

(29)

Thanks to the comparison principle, we have u(t, x) ≥ ω(t, x) for t ≥ T and 0 ≤ x ≤ L. Here
ω(t, x) satisfies the following:

⎧
⎪⎪⎨

⎪⎪⎩

ωt – ωxx = ω(1 – ω – ε
m ) for all t ≥ T and x ∈ [0, L],

ωx(t, 0) = ω(t, L) = 0, t ≥ T ,

ω(T , x) = u(T , x).

(30)

Since L > π
2 , the arbitrariness of ε follows that limt→+∞ ω(t, ·) = ū(x) uniformly in x ∈ [0, L].

Here ū(x) is to be determined in Lemma 2.1.
We then have lim inft→+∞ u(t, ·) ≥ ū(x) for x ∈ [0, L]. This completes the proof of Theo-

rem 1.5. �

Proof of Lemma 1.3 By Theorem 1.5, we know that if s∞ < L then

lim inf
t→+∞ u(t, ·) ≥ ω(x) > 0 for x ∈ [0, L] and lim

t→+∞
∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

In the following, we assume on the contrary that s∞ > π
2

√
D/k while s∞ < L. Then there

exists T > 0 such that s(T) > π
2

√
D/k and u(t, x) > 0 for all t > T and 0 < x < s(T). Let υ(t, x)

be the solution of the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

vt – Dvxx = kv(1 – bv
a ) for all t > T and 0 < x < s(T),

vx(t, 0) = v(t, s(T)) = 0, t > T ,

v(T , x) = v(T , x), 0 < x < s(T).

(31)

By the comparison principle, we have υ(t, x) ≤ v(t, x) for all t > T and 0 < x < s(T). Since
s(T) > π

2

√
D/k, by Proposition 3.3 in [4],

υ(t, x) → W (x) > 0
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as t → +∞ uniformly in any compact subset of (0, s(T)), where W is the unique positive
solution of

⎧
⎨

⎩

DWxx + kW (1 – bW
a ) = 0 for all 0 < x < s(T),

Wx(0) = W (s(T)) = 0.
(32)

So, for each x we have

lim inf
t→+∞ v(t, x) ≥ lim inf

t→+∞ υ(t, x) = W (x) > 0.

This is a contradiction to Theorem 1.5. Therefore, s∞ < L implies that

s∞ <
π

2
√

D/k.

Finally, since s′(t) > 0 for t > 0, then with the above result we can see that s∞ > L when
s0 ≥ π

2

√
D/k. �

Proof of Part 1 of Theorem 1.6 We consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω1 – D∂xxω1 = kω1(1 – bω1
a ), for all t > 0 and 0 < x < s1(t),

∂xω1(t, 0) = 0, t > 0,

ω1(t, s1(t)) = 0, t > 0,

s′
1(t) = –μω1x(t, s1(t)) and s1(0) = s0, t > 0,

ω1(0, x) = v0(x), 0 ≤ x ≤ s0.

(33)

By the comparison principle stated in Lemma 1.2, we have s1(t) ≤ s(t) and ω1(t, x) ≤ v(t, x)
for all t > 0 such that 0 < x < s1(t). Now we focus on system (33):

Similar to the argument done in Lemma 3.7 of [7], we first consider the case
‖v0‖C[0,s0] ≤ a

b and conclude that ω1(t, x) < a/b. Assuming that s1(∞) < L, a straightfor-
ward computation leads to

d
dt

∫ s1(t)

0
ω1(t, x) dx =

∫ s1(t)

0
∂tω1(t, x) dx + s′

1(t)ω1
(
t, s1(t)

)

=
∫ s1(t)

0
D∂xxω1 dx +

∫ s1(t)

0
kω1

(

1 –
bω1

a

)

dx

=
–Ds′

1(t)
μ

+
∫ s1(t)

0
kω1

(

1 –
bω1

a

)

dx.

Integration from 0 to t yields

∫ s1(t)

0
ω1(t, x) dx =

∫ s0

0
v0(x) dx +

D
μ

(
s0 – s1(t)

)
+

∫ t

0

∫ s1(τ )

0
kω1

(

1 –
bω1

a

)

dx dτ . (34)

Since 0 < ω1(t, x) < a/b, for t > 0 and x ∈ [0, s1(t)], we have

∫ t

0

∫ s1(τ )

0
kω1

(

1 –
bω1

a

)

dx dτ ≥
∫ 1

0

∫ s1(τ )

0
kω1

(

1 –
bω1

a

)

dx dτ > 0. (35)
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If s1(∞) < L, then we have s1(∞) ≤ π
2

√
D/k and limt→+∞ ‖ω1(t, ·)‖C[0,s1(t)] = 0. Thus, pass-

ing to the limit as t → +∞, we get

∫ s0

0
v0(x) dx <

D
μ

(
π

2

√
D
k

– s0

)

,

which is a contradiction to our assumption. Therefore, we must have s1(∞) > L, and this
in turn implies that s∞ > L.

If ‖v0‖C[0,s0] > a
b , we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω2 – D∂xxω2 = kω2(1 – bω2
a ) for all t > 0 and 0 < x < s2(t),

∂xω2(t, 0) = 0, t > 0,

ω2(t, s2(t)) = 0, t > 0,

s′
2(t) = –μω2(t, s2(t)), t > 0,

s2(0) = s0,

ω2(0, x) = a
b‖v0‖C[0,s0]

v0(x), 0 ≤ x ≤ s0.

(36)

From Lemma 1.2, we have s2(t) ≤ s(t) and ω2(t, x) ≤ v(t, x). Note that ‖ω2(0, ·)‖∞ = a/b and
this leads to ω2(t, x) < a/b. Then, as we did above, we can conclude that

∫ s0

0

a
b‖υ0‖∞

v0(x) dx <
D
μ

×
(

π

2

√
D
k

– s0

)

and get a contradiction. Eventually this leads to s∞ > L. The proof of Part 1 of Theorem 1.6
is now complete. �

Proof of Part 2 of Theorem 1.6 Let

s̄(t) = s0

(

1 + δ –
δ

2
e–βt

)

for t ≥ 0, V (y) = cos
πy
2

for 0 ≤ y ≤ 1, and

ῡ(t, x) = M̄e–βtV
(

x
s̄(t)

)

for 0 ≤ x ≤ s̄(t),

where δ = 1
2 (

π
2

√
D/k

s0
– 1) > 0 (since s0 < π

2

√
D
k ) and

β =
π2

8
D

(1 + δ)2s2
0

–
k
2

> 0 because s0(1 + δ) <
π

2

√
D
k

.

Let M̄ = ‖v0‖∞
cos( π

2+δ
) . If ‖v0‖∞ ≤ cos( π

2+δ
) δs2

0β(2+δ)
2πμ

, then a computation leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for all t > 0 and 0 < x < s̄(t),

ῡt – Dῡxx – kῡ(1 – ῡ
M1+a ) ≥ M̄e–βtV (( π

2 )2 D
(1+δ)2s2

0
– k – β) ≥ 0,

ῡx(t, 0) = 0, t > 0,

ῡ(t, s̄(t)) = 0, t > 0,

s̄′(t) + μῡx(t, s̄(t)) ≥ δs0βe–βt

2 [1 – 2μπM̄
δs2

0β(2+δ) ] ≥ 0, t > 0.

(37)
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Since s0 ≤ s̄(0) and ῡ(0, x) ≥ v0(x) on [0, s0] we get s(t) ≤ s̄(t) on [0, +∞). Taking t → +∞
yields

s∞ ≤ s̄(∞) = s0(1 + δ) <
π

2
√

D/k.

By Lemma 1.3, we complete the proof. �

3 Summary and conclusions
In this paper, we have studied a Leslie–Gower and Holling-type II predator–prey model
in one-dimensional environment. The predator v is the invader which exists initially in
an interval [0, s0] and has the Leslie–Gower terms which measure the loss in the predator
population due to rarity of the prey. The prey u is the native species living in the whole
region [0, L]. In this setting, we obtained several results:

1. Lemma 1.3 provides a sufficient condition for spreading success or spreading failure
via a comparison between spreading front x = s(t) and the threshold π

2

√
D
k .

2. Theorem 1.6 reveals that when s0 < π
2

√
D
k , if the total initial population in the region

[0, s0],
∫ s0

0 v0(x) dx, is greater than

max

{

1,
b‖v0‖∞

a

}

· D
μ

·
(

π

2

√
D
k

– s0

)

,

then spreading takes place. By contrast, the invasion by species v fails (and the
species v vanishes eventually) if the maximal initial population density, ‖v0‖∞, in the
region [0, s0] is less than a positive number given explicitly in part 2 of the theorem.

3. According to Theorem 1.4 and Theorem 1.5, we can say that the species v spreads
successfully if s∞ > L and

lim sup
t→+∞

u(t, x) ≤ ū(x); lim inf
t→+∞ u(t, x) ≥ u(x);

and

lim sup
t→+∞

v(t, x) ≤ v̄(x); lim inf
t→+∞ v(t, x) ≥ v(x).

And we can say that the specie v vanish eventually if s∞ < L and

lim inf
t→+∞ u(t, ·) ≥ ū(x) for x ∈ [0, L] and lim

t→+∞
∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

We also have the following conclusions:
1. Suppose that s0 < π

2

√
D/k in the free-boundary problem (1)–(2). Then:

(a) There exists μ̄ > 0 depending on v0 such that s∞ > L whenever μ ≥ μ̄. The value
of μ̄ is given by

μ̄ = max

{

1,
b‖v0‖∞

a

}

· D ·
(

π

2

√
D
k

– s0

)

·
(∫ s0

0
v0(x) dx

)–1

. (38)
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(b) There exists μ > 0, depending on v0, such that s∞ < L whenever μ ≤ μ. Hence, by
Theorem 1.5 we have

lim inf
t→+∞ u(t, ·) ≥ ū(x) for x ∈ [0, L] and lim

t→+∞
∥
∥v(t, ·)∥∥C[0,s(t)] = 0.

2. Moreover, from Theorem 1.6 we can easily have other criteria for spreading in terms
of the diffusion coefficient D, for any s0. Let D∗ = 4ks2

0
π2 for any s0. Then:

(i) 0 < D ≤ D∗ implies that spreading occurs;
(ii) if D > D∗, then the statement μ ≥ μ̄ is equivalent to spreading occurs, and μ ≤ μ

implies that vanishing occurs.
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