MATH 100, Tutorial 7 (Week of March 4, 2024)

Exercise 1 Determine the domain, range, and horizontal asymptote(s) of the following functions:

- (a) $f(x) = e^x + 2$.
- (b) $f(x) = e^{-2x} 1$.
- (c) $f(x) = 1 2^x$. In this part, write f in terms of the natural exponential (terms of the form $e^{u(x)}$ not 2^x).
- (d) $f(x) = 7^{x+1} + 2$. In this part, write f in terms of the natural exponential (terms of the form $e^{u(x)}$ not 7^x).
- $(e) f(x) = \ln(x+1)$
- (f) $f(x) = \ln(x^2 + 1)$
- (g) $f(x) = \ln(x^2 2x 3)$

Exercise 2 Solve the following equations if possible.

- (a) $\ln(x+1) + \ln(x+2) = \ln 4$.
- (b) $4^{x+1} 32 = 0$.
- (c) $2^{5x} 20(2^x) = 0$.
- $(d) \ 7^{3x-2} 11 = 0.$
- (e) $\log_6(x+9) + \log_6 x = 2$.
- (f) $\log_5(3x+2) = -2$.

Exercise 3 Find $\frac{dy}{dx}$ in what follows:

(a) $\frac{x^2}{25} - \frac{y^2}{16} = 49.$ (b) $x^2y = 2y - 9.$ (c) $xy - \cos(xy) = 1.$ (d) $y\sqrt{x+4} = xy + 8.$ **Exercise 4** *For the* $x^2 + xy + y^2 = 7$,

- (a) find the x-intercept(s).
- (b) find the slope of the tangent line(s) at the x-intercepts.

Exercise 5 Find the equation of the tangent line to the graph of the equations at the specified point:

- (a) $x^2 + 2xy 3y^2 = 0$ at the point (1, 1).
- (b) $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{6}$ at the point $\left(0, \frac{1}{2}\right)$.
- (c) $\tan^{-1}(x+y) = x^2 + \frac{\pi}{4}$ at the point (0,1).