MATH 100, Tutorial 7
 (Week of March 4, 2024)

Exercise 1 Determine the domain, range, and horizontal asymptote(s) of the following functions:
(a) $f(x)=e^{x}+2$.
(b) $f(x)=e^{-2 x}-1$.
(c) $f(x)=1-2^{x}$. In this part, write f in terms of the natural exponential (terms of the form $e^{u(x)}$ not 2^{x}).
(d) $f(x)=7^{x+1}+2$. In this part, write f in terms of the natural exponential (terms of the form $e^{u(x)}$ not 7^{x}.
(e) $f(x)=\ln (x+1)$
(f) $f(x)=\ln \left(x^{2}+1\right)$
(g) $f(x)=\ln \left(x^{2}-2 x-3\right)$

Exercise 2 Solve the following equations if possible.
(a) $\ln (x+1)+\ln (x+2)=\ln 4$.
(b) $4^{x+1}-32=0$.
(c) $2^{5 x}-20\left(2^{x}\right)=0$.
(d) $7^{3 x-2}-11=0$.
(e) $\log _{6}(x+9)+\log _{6} x=2$.
(f) $\log _{5}(3 x+2)=-2$.

Exercise 3 Find $\frac{d y}{d x}$ in what follows:
(a) $\frac{x^{2}}{25}-\frac{y^{2}}{16}=49$.
(b) $x^{2} y=2 y-9$.
(c) $x y-\cos (x y)=1$.
(d) $y \sqrt{x+4}=x y+8$.

Exercise 4 For the $x^{2}+x y+y^{2}=7$,
(a) find the x-intercept(s).
(b) find the slope of the tangent line(s) at the x-intercepts.

Exercise 5 Find the equation of the tangent line to the graph of the equations at the specified point:
(a) $x^{2}+2 x y-3 y^{2}=0$ at the point $(1,1)$.
(b) $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{6}$ at the point $\left(0, \frac{1}{2}\right)$.
(c) $\tan ^{-1}(x+y)=x^{2}+\frac{\pi}{4}$ at the point $(0,1)$.

