MATH 100, Tutorial 6 (Week of February 26, 2024)

Exercise 1 State the Inverse Function Theorem.
Exercise 2 Use the given values to find $\left(f^{-1}\right)^{\prime}(a)$:
(a) $f(\pi)=0, \quad f^{\prime}(\pi)=-1, \quad a=0$.
(b) $f(\sqrt{3})=\frac{1}{2}, \quad f^{\prime}(\sqrt{3})=\frac{2}{3}, \quad a=\frac{1}{2}$.

Exercise 3 Let $f(x)=\frac{2 x+5}{x+3}$ be a function defined on $(-3,+\infty)$. Also, let g be the function defined on $(-\infty, 2)$ by $g(x)=\frac{5-3 x}{x-2}$.
(a) Show that g is the inverse function of f.
(b) Express $\frac{d}{d x}(g(f(x)))$ in terms of g^{\prime} and f^{\prime}.
(c) Compute $g^{\prime}(x)$ in terms of x and deduce $g^{\prime}(f(x))$ in terms of x.
(d) Compute $f^{\prime}(x)$ in terms of x.

Exercise 4 Use the Inverse Function Theorem to show that $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$.
Exercise 5 Find $\frac{d y}{d x}$ for the given function:
(a) $y=\arccos (\sqrt{x})$
(b) $y=\arcsin \left(x^{2}\right)$
(c) $y=\left(1+\tan ^{-1} x\right)^{3}$.

