MATH 100, Tutorial 6 (Week of February 26, 2024)

Exercise 1 State the Inverse Function Theorem.

Exercise 2 Use the given values to find $(f^{-1})'(a)$:

- (a) $f(\pi) = 0$, $f'(\pi) = -1$, a = 0.
- (b) $f(\sqrt{3}) = \frac{1}{2}$, $f'(\sqrt{3}) = \frac{2}{3}$, $a = \frac{1}{2}$.

Exercise 3 Let $f(x) = \frac{2x+5}{x+3}$ be a function defined on $(-3, +\infty)$. Also, let g be the function defined on $(-\infty, 2)$ by $g(x) = \frac{5-3x}{x-2}$.

- (a) Show that g is the inverse function of f.
- (b) Express $\frac{d}{dx}(g(f(x)))$ in terms of g' and f'.
- (c) Compute g'(x) in terms of x and deduce g'(f(x)) in terms of x.
- (d) Compute f'(x) in terms of x.

Exercise 4 Use the Inverse Function Theorem to show that $\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$.

Exercise 5 Find $\frac{dy}{dx}$ for the given function: (a) $y = \arccos(\sqrt{x})$ (b) $y = \arcsin(x^2)$ (c) $y = \left(1 + \tan^{-1}x\right)^3$.