MATH 100, Tutorial 4 (Week of February 5, 2024)

(Pre-lab) For this week you need to:

- Do exercise 1-part (a) [1 pt] and exercise 3 [4 pts].

Exercise 1 Let $h(x)=\frac{f(x)}{g(x)}$, where f and g are the functions graphed in the adjacent figure. In each of the following cases, find (if the quantity exists)

(a) $h^{\prime}(1)$,
(b) $h^{\prime}(3)$, and
(c) $h^{\prime}(4)$.

Exercise 2 Find the point on the graph of $f(x)=x^{3}$ such that the tangent line at that point has an x intercept of 6 .

Exercise 3 Find the equation of the line passing through the point $P(3,3)$ and tangent to the graph of $f(x)=\frac{6}{x-1}$.

Exercise 4 Find a quadratic polynomial such that $f(1)=5, f^{\prime}(1)=3$ and $f^{\prime \prime}(1)=-6$.
Exercise 5 In each of the following cases, decompose each function in the form $y=f(u)$ and $u=g(x)$, and then find $\frac{d y}{d x}$ as a function of x.
(i) $y=\sqrt{4\left(x^{2}-6 x\right)+3}$
(ii) $y=\left(8 x^{2}+5\right)^{3}$
(iii) $y=\left(\frac{x}{8}+\frac{8}{x}\right)^{8}$.

Exercise 6 Let $y=\left(f(x)+5 x^{2}\right)^{4}$ and suppose that $f(-1)=-4$ and $\frac{d y}{d x}=3$ when $x=-1$. Find $f^{\prime}(-1)$.

