The numbers between brackets in the margin represent the marks assigned to the question. The maximum grade is 100 .

1. Compute the following limits, if they exist (giving the necessary justifications). If the limit does not exist, state that.
(a) $\lim _{x \rightarrow 7} \frac{4\left(x^{2}-8 x+7\right)}{2 x-14}$.
(b) $\lim _{x \rightarrow 7} \frac{4(x-7)}{\sqrt{x}-\sqrt{7}}$.
(c) $\lim _{x \rightarrow+\infty} \frac{4 x^{3}-2 \sqrt{x}}{\sqrt{x}+16 x^{3}-x}$.
(d) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$.
2. For the following functions, sketch the graph and use the definition of a derivative to show that the function is not differentiable at $x=1$.
(a) $f(x)=\left\{\begin{array}{l}2 \sqrt{x}, 0 \leq x \leq 1 \\ 3 x-1, x>1 .\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{l}-x^{2}+2, x \leq 1 \\ x, x>1 .\end{array}\right.$
(20) 3. Sketch the graph of one function $y=f(x)$ that simultaneously satisfies all of the following properties:
(a) $f^{\prime}(x)<0$ for $-2 \leq x<1$
(b) $f^{\prime}(2)=0$
(c) $f^{\prime}(x)<0$ for $x>2$

Page 1 of 2

(d) $f(2)=-4$ and $f(0)=-2$
(e) $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow+\infty} f(x)=-\infty$
(f) $f^{\prime}(1)$ does not exist.
4. Each of the limits in the list below represents the derivative of a function $y=f(x)$ at $x=a$. In each case, find $f(x)$ and a :
(a) $\lim _{h \rightarrow 0} \frac{\left(2(2+h)^{3}-(2+h)\right)-14}{h}$.
(10)
(b) $\lim _{h \rightarrow 0} \frac{(8+h)^{2 / 3}-4}{h}$.

TOTAL MARKS: 100

